Chapter 6
Folding

Folding

» The folding transformation is used to
systematically determine the control circuits in
DSP architecture where multiple algorithm
operations are time-multiplexed to a single
functional unit.

* The hardware is reduced by a factor of N, the
time is increased by the same factor.

* May lead to a large number of registers, thus
registers minimization techniques are studied.




b(n) c(n)

Valid for 2 cycles

()

Cyclg A B E C
a(0) b(0) a(0)+b(0 — —
a(0)+b(9@(0)+b(@a(0)+b(0) _

a(1) b(1) a(1)+b(1l\$a(0)+b(0)+0(0) a(0)+b(0)+c(0)
a(1)+b(lm(mb(%’a(mbm —

a(2) Wa(2)+b(2‘)\$a(1)+b(1)+c(l) a(1)+b(1)+c(1)
a2)+h(2)_c(2)_a@2)+b(2)+e(2) a2)+b(2) —

aE3) b(3) a(3)+h(3) a(2)+b(2)+c(2) a(2)+b(2)+c(2)

o 01 W DN B O

Folding Transformation

* The objective is to provide a systematic
technique for designing control circuits for
hardware where several algorithm
operations are mapped to the same piece
of hardware via time-multiplexing of
course.

» We start with a DFG for the algorithm.
» We need the following definitions




Folding Transformation

U and V are two nodes in the original DFG.

U and V are connected via an edge e with a delay w(e)
U->w(e) V

» Folding factor is N

* Node (computation) U It iteration is performed at time NI
+u

* Node (computation) V I iteration is performed at time NI
+v

* H, and H, are the hardware units U and V are performed
at

* H, and H, are pipelined by P, and P, stages

Folding Transformation

(U —wep—(v)

_______________

. Ni+v
@o-{ D} DF(U—=—V)—OXC>——’@




Folding Transformation

e The results of the I iteration of node U is
available at NI+u+P,

 Since there are w(e) delays between U
and V, the result is needed in the (I+w(e))"
iteration of V, which is executed at
N(l+w(e))+v

De (U —5V) =[N +w(e)+Vv]-[Nl+P, +u]
= Nw(e)-P, +v—-u

Folding Transformation

* Folding Set

— Is an ordered set of operations executed by the same
functional unit.

— Each folding set contains N entries (some of which
may be null operations)

— The Jt position within the folding set is executed in
the time partition |

— For example the folding set S;={A;, ¢, A,} for N=3

— A, is performed during the 0" time partition S,|0, while
A, is done in the 2" time partition S, |2

— Folding set is obtained using a scheduling and
allocation algorithm




Example

(§413) (Sl1) oUT QN=4

UFolding sets are
adder S;={4,2,3,1} and
a multiplier
S,={5,8,6,7}

W Addition takes 1 and
multiplication 2 time
units

U1-stage adder and 2-
stage multiplier

Mo wnn
OO oUW N O

VY T | VI N 1 B

[
o e 19 19
+ + +
O N
| |
W O
1l
o O

D,:(U—e>V)=NW(e)—Pu+v—u Dr(8 5 4




(1-2) = 4(1) Q
Dr(1-5) = 4(1) S o
Dr(1—=6) = 4(1)

Dr(1-7) = 4(1) [orin]
Dp(1+8) = 4(2)

Dr(321) = 4(0)

Dr(4—=2) = 4(0)

Dp(5+3) = 40)-2+2-0=0 {p.q) denotes 4/ +p and 4/ +q
Dp6—4) = 4(1)-2+0-2=0

Dp(7=3) = 4(1)-2+2-3=1

Dr(8—=4) = 4(1)-2+40-1=1

Folding Transformation

What if some of the D¢’s are negative
Of course we can not implement that
A condition: D >0

We can use retiming of the original graph
to get a valid D¢'s

Recall, retiming equation U 2> V
w,(e)=w(E)+rV)-rU)=0




Folding Transformation

De (U —e>V) is the delays in the folded retimed graph
D (U—25V) = Nw(e) - P, +Vv—u
D (U—25V) = N(w(e)+r(V)-r(U))-R, +v-u
Df (U —25V) = Nw(e) - P, + v —u-+Nr(V) - Nr(U)
DE (U —25V) =Dg (U—25V)+Nr(V)—NrU) >0
De (U —25V)

N
De (U —e—>V)‘

N

rU)-r(v)<

r(U)—r(V)s{

Folding Transformation

» We can use the techniques in Chapter 4 to
solve for retiming.

e Then we fold the graph - valid
transformation




Exercise

T

r(u)_r(v){opw —)

g } Exercise

Edge | Folding Equation | Retiming for Folding Constraint
152 Dr(1>2)=-3 r(1) - r(2) < -1
151 Dr(1—=5)=0 r(1) -r(5) <0
1-6| Drp(126)=2 r(1)—r(6) <0
1257 Dr(1-217)=7 r(1) —r(7) <1
1-8| Dr1—8)=5 r(1) -r(8) <1
3-1| Dp(3—1)=0 r(3)—r(1) <0
42| Dp(4—2)=0 r(4) - 7r(2) <0
53| Dp(5—23)=0 r(5) —r(3) <0
6 24| Dr(6 —+4)=-4 r(6) -r(4) < -1
73| Dp(7T—>3)=-3 r(7) -r(3) < -1
84| Dr(8 5 4)=-3 r(8) —r(4) < -1




Exercise

Solution

e One solution is

 r()=-1 r(2)=0 r(3)=0 r(4)=0

* 1(5)=0 r(6)=-1 r(7)=-1 r(8)=-1

e Can we reach the above solution from the
method we studies in this course? NO

* Another solution

* 1(1)=-1 r(2)=0 r(3)=-1 r(4)=0

e 1(5)=-1 r(6)=-1 r(7)=-2 r(8)=-2




[YORKUNIVERSITY " csE410]
Registers Minimization

Techniques
* The objective is to minimize the number of
registers in the implementation of a DSP
algorithm. Topics
»Life time analysis

»Data allocation using forward-backward
register allocation

»Register minimization in folded architecture
»Examples

Life Time Analysis

» A data sample (variable) is alive from the time it is
produced, until the time it is consumed (dead).

» During that time, the variable is stored in a register.

* The maximum number of live variables at any time is the
minimum number of registers required for the
implementation.

* We use the convention that the variable is not alive
during the cycle it is produced in, and alive during the
cycle it is consumed in.




Cycle , p ¢ #live CE’(‘]Cle a;a;a, bgb, b, ¢ye;c, # léve cy{()']e_aa b, ¢, #lé\re
(1) - 2 1 1 1 1
2 2 . % 2 g
4 3
; ; : 2 2 10 2
; : 7 O 3 6 240=2
; ; . 7 7 00— 2413
7 2 0 5
10 —0 3 -
12 3 periodic with a
6 13 O e 3 period of N=6
N= 14 S
15 5
= 2
18 5
19 —= 3,
20 >
a b c Transpose a d g
d e f| pmmlp b e h
g h i c f i
ihgfedcba_’ atrin __ifchebgda
Transpose

11



Output time

with zero delay\

wn
)
3
=
@

-0 KQ +hDd®O OO O T D

input

0O ~NOoO O WwWwNPEF O H

T

OCOITNNP_PFP O WO

N

zlout

—

output

(@)

I—‘(OO?I:@U‘II—‘\I-P

N

Life
0—4
17
2—-10
3 -5
4 -8
511
6 —6
7 -9
8 —>12

cycle

Circular Life-Time Chart

abcdefghi

0
1

2

3

4 =

5 ()

6

7 9,

8

9 O
10 )

11

12 { =

# live

R N T

4+0=4
3+1=4
2+2=4
1+3=4

12



Data Allocation

« Determine the min. number of registers

» Input each variable at the time its life starts. If more than
one use multiple registers such that the longest lifetime
is allocated to the initial register.

» Each variable is allocated in a forward manner until it is
dead or reaches the last register

» Allocation is periodic, all allocation to current iteration
repeats itself after after N

» If reaches the last register and not dead allocate
backward ((if more than one, choose one that has been
allocated backward before), then forward again and so
on.

Allocation table

e abcdefghi Ly Cycle| /P | R1| R2 | R3| R4 | OFP
0 0 0 a
1 1 1 b [*a
2 : MEENEY
Y
4 = l 4 3 d ¢ :b K “
5 4 4 e (Wl [» ]2 ]a
6 4 5 AN EE
; O ] : 6 g [Fle[plc |g
\_S — %
9 O si0-4 7 h (¢ \f e b\ b
10 {) 3+1=4 8 i \h c } € e
11 O 2+42=4 9 SR & £ |n
' _
12 {— 1+3=4 0 sl‘ f‘/ c
11 P
12

13



Cyclg input| R1 R2 R3 Output
0 a
N
1 1b a
- N
~— 2 b\ a
3 ™ b oA
&«
Cycles a b ¢ #live 4 ¢ a a
5 c
0 0 b\
1 1 6 *c. | b
2 2
3 2 7 nb> ~ c b,c
4 - 2 —
5 2
6 2+0
7 ——— 2+1=3
f|——"
Cycle| /P | R1| R2 | R3| R4 | OP
0 a
L b [*a . ouT
2 c % L% ‘%
3 dl% (D ]% 916 01+1,2,3.4.7.8
4 e I [ 2 12 |a 000
5 SRR EE
6 g ‘f ‘e b‘/,c g N
7 hl&LF (& b [b
8 i h ey \Q\ e 91+6
9 TR & (e |n
10 ? f/ c
1 i
12

14



Folded Architecture 61+1,4
(A switch is a MUX) ‘}(c > ab
ol+1
61+1,2,5
IN c
Cyclg input| R1 R2 R3 Output
0 a
cycle a;b, ¢, #l(i]"e ! \a o
o EEEENE
2 2 3 b a
3 2
1 =0 2 4 | ¢ 4 | b | a
5 2 5 ~c
6 2+0=2 b<
7 — = 2+1=3 6 N C_ /b
- 7 H o c | b

Architecture
» Perform retiming for folding
» Write the folding equations

table

e Draw the lifetime chart and determine the
minimum number of registers

* Draw the folded architecture

Register Minimization for Folded

» Use the folding equations to construct a lifetime

» Perform forward-backward register allocation

15



Example
. . 8413
» Consider the Biquad N
example.
* Node u is created at time
u+P,

* Node u is consumed at
time = u+P, +
max,(Dg(U—-V)

* We have already solved
this example and we got
the folding equations

Bi Filter
D(U,V)=Nw(e)-P,+v- quad Filte

Node Tinput_) Toutput
Dp(1=+2) = 4(1)-1+1-3=1 1 49
Dp(135) = 4(1)-140-3=0 2
Drp(l=6) = 4(1)-1+2-3=2 3 3.3
Dr(1-7 = 41)-14+43-3=13 4 151
Dp(l58) = 4(2)-1+1-3=5 c > o
Dr(3—+1) = 4(0)-143-2=0
Dr(d52) = 4(0)-1+1-0=0 6 44
Dr(5—+3) = 4(0)-2+2-0=0 7 556
Dr(6—=4) = 4(1)-2+0-2=0 8 34
Dp(7—3) = 4(1)-2+2-3=
De@=4) = 4)=2+0-1=L 1 for node U
Node U produces data at u+ PR, + max{Dg (U ->V)}
time=u+P, vV

16



Biquad Filter
Node Tinput_) Toutput
cyle 12345678 sy 1 49
0 0
1 * 0 2
2 ” % 0
3 0
4 ——X—d)— 1+0=1 3 33
5 1+0=1
6 5 240=2 4 1->1
7 1+0=1
8 1+1=2 5 2>2
9 ={3 1+1=2
6 4 -4
7 556
8 3—>4
Biquad Filter
cycle| iip R1 R2 | olp
cyvele 12345678 # live
0 - 0 0
1 * 0
2 X 0 1
3 3 0
y —%—0 14001 2
5 1+0=1
6 ——(5— 2+0=2 3 |n8
7 1+0=1 4 | n1_[(n8) ng
8 1+1=2 >
9 = 1+1=2 5 | n7_| n1
6 (n7)| n1 | n7
v
7 n1
AJ
8 n1
v
9 (n1)| n1

17



cycle| ifp R1 R2 | olp eyele 12345678 £live IN

0
0 1
2
1 3
2 :
3 | n8 s
5
4 | n1_[(n8) n8 ]
5 | n7jnm ’
6 (n7)| n1 | n7
M
7 n1
v
8 n1
¥
9 (n1)| n1
@ A R
FQQ_.OUT r
{OsZ}l {1.3} I 5
O
{3 *%’ O |

IN 0 pd [ £ ° 2D
JoAO-Eh oA
(0,1,2;T 11,2,3}

Explanation

* Now, we build the architecture (final
architecture is in the previous slide) by
considering every edge in the graph.

» Combining these partial architecture to
make the final one.

18



ouT

Considering 1-> 2 (Adder to adder)
N1 is produced at time O (4¢+0) needed by 2 at time 1 (a delay of 1)

An edge from R1 (where the result will be after 1 time unit) to node
2 (adder) that switches at time 4¢+1

Also, input is switched at 41+3 and output at 41+2

s v—— OUT

1 - 5 (adder to multiplier)
That require 0 delay (Dg(1->5) ) created at 0 consumed at 0

A path from output of adder to input of multiplier switches at 4¢+0

19



1 - 6 adder to multiplier
N1 produces at time 0, needed after a delay of 2 at multiplier at 2

Need a switch to move it from adder to R1 at 0, R1to R2 at 1, R2 to
multiplier at 2

1> 7 delay of 3
N1 produced at0, needed after 3 at 3

We need a switch to go from adder to R1at 0, R1 > R2at 1, R2 >
R2 at 2, R2 - multiplier at 3

20



1> 8delay of 5
N1 produces result at 0, needed after 5 at multiplier 4¢+1

A switch Adderto R1 at 0, R1 >R2 at 1, R2 >R2 at 2, R2 > R2 at
3. R2 >R2 at 4 (4¢+0), R2 > Multiplier at 5 (4¢+1)

s v—— OUT

3 > 1delay of 0

N3 produces result at 3, needed at 3 at adder

21



4 - 2 delay of 0

N4 produces result at 1, needed at adder at 1 no delay

Switch from output of adder to input of adder with no delay at 1

o e— OUT
111
N - e
e o - MIEY b 2D

5> 3 delay of 0
N5 produces at 2, needed at adder with no delay

A switch from output of multiplier to input of adder at 2




Ml R1 \-—+®» 2D

6 = 4 delay of 0
N6 produces at 4 i.e. 0 (2=2) needed with no delay at adder

A switch from output of multiplier to input of adder at 0

s v—— OUT

7 > 3delay of 1
N7 produces at (3+2)=1, needed after 1 delay at adder
A switch from multiplier to R1 at 1, R1 - adder at 2

23



8 > 4 delay of 1
N8 produces at (1+2)=3 needed after one delay to input of adder
A switch from Multiplier > R1 at 3 and R1 - adder at 0

Superimposing the switches produces the final architecture

Note that constants a,b,c,d are muxed into multiplier at {0,2,3,1}

24



