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Chapter 6
Folding
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Folding
• The folding transformation is used to 

systematically determine the control circuits in 
DSP architecture where multiple algorithm 
operations are time-multiplexed to a single 
functional unit.

• The hardware is reduced by a factor of N, the 
time is increased by the same factor.

• May lead to a large number of registers, thus 
registers minimization techniques are studied.
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Example

A

C
B

D

Cycle A B E C D
0 a(0) b(0) a(0)+b(0)               ⎯ ⎯
1 a(0)+b(0)   c(0) a(0)+b(0)+c(0)      a(0)+b(0) ⎯
2 a(1) b(1) a(1)+b(1) a(0)+b(0)+c(0) a(0)+b(0)+c(0)
3 a(1)+b(1) c(1) a(1)+b(1)+c(1) a(1)+b(1) ⎯
4 a(2) b(2) a(2)+b(2) a(1)+b(1)+c(1) a(1)+b(1)+c(1)
5 a(2)+b(2) c(2) a(2)+b(2)+c(2) a(2)+b(2) ⎯
6 a(3) b(3) a(3)+b(3) a(2)+b(2)+c(2) a(2)+b(2)+c(2)

E

Valid for 2 cycles
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Folding Transformation
• The objective is to provide a systematic 

technique for designing control circuits for 
hardware where several algorithm 
operations are mapped to the same piece 
of hardware via time-multiplexing of 
course.

• We start with a DFG for the algorithm.
• We need the following definitions
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Folding Transformation
• U and V are two nodes in the original DFG.
• U and V are connected via an edge e with a delay w(e) 

U w(e)  V
• Folding factor is N
• Node (computation) U lth iteration is performed at time Nl

+u
• Node (computation) V lth iteration is performed at time Nl

+v
• Hu and Hv are the hardware units U and V are performed 

at
• Hu and Hv are pipelined by Pu and Pv stages

YORK UNIVERSITY CSE4210

Folding Transformation
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Folding Transformation
• The results of the lth iteration of node U is 

available at Nl+u+Pu

• Since there are w(e) delays between U 
and V, the result is needed in the (l+w(e))th

iteration of V, which is executed at 
N(l+w(e))+v
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Folding Transformation

• Folding Set
– Is an ordered set of operations executed by the same 

functional unit.
– Each folding set contains N entries (some of which 

may be  null operations)
– The Jth position within the folding set is executed in 

the time partition j
– For example the folding set S1= {A1, φ, A2} for N=3
– A1 is performed during the 0th time partition S1|0, while 

A2 is done in the 2nd time partition S1|2
– Folding set is obtained using a scheduling and 

allocation algorithm
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Example
N=4

Folding sets are 
adder S1={4,2,3,1} and 
a multiplier 
S2={5,8,6,7}

Addition takes 1 and 
multiplication 2 time 
units

1-stage adder and 2-
stage multiplier

YORK UNIVERSITY CSE4210

Example

uvPeNwVUD u
e

F −+−=⎯→⎯ )()(
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Example
Adder

Adder After delay of 

Arrives at
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Folding Transformation

• What if some of the DF’s are negative
• Of course we can not implement that
• A condition: DF ≥ 0
• We can use retiming of the original graph 

to get a valid DF‘s
• Recall, retiming equation  U V

0)()()()( ≥−+= UrVrewewr
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Folding Transformation
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Folding Transformation
• We can use the techniques in Chapter 4 to 

solve for retiming.
• Then we fold the graph  valid 

transformation
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Exercise
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Exercise
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Solution 
• One solution is
• r(1)=-1   r(2)=0   r(3)=0   r(4)=0
• r(5)=0    r(6)=-1  r(7)=-1  r(8)=-1
• Can we reach the above solution from the 

method we studies in this course?  NO
• Another solution
• r(1)=-1  r(2)=0   r(3)=-1   r(4)=0
• r(5)=-1   r(6)=-1   r(7)=-2   r(8)=-2
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Registers Minimization 
Techniques

• The objective is to minimize the number of 
registers in the implementation of a DSP 
algorithm. Topics

Life time analysis
Data allocation using forward-backward 
register allocation
Register minimization in folded architecture
Examples
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Life Time Analysis
• A data sample (variable) is alive from the time it is 

produced, until the time it is consumed (dead).
• During that time, the variable is stored in a register.
• The maximum number of live variables at any time is the 

minimum number of registers required for the 
implementation.

• We use the convention that the variable is not alive 
during the cycle it is produced in, and alive during the 
cycle it is consumed in.
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N=6

Cycle
0
1
2
3
4
5
6
7

#live
0
1
2
2
2
2
2
2

a    b     c

2

periodic with a 
period of N=6
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Example

i h g f e d c b a
Matrix

Transpose

i f c h e b g d a

⎥
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⎢
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cba
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⎡

ifc
heb
gdaTranspose
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Example

Sample
a
b
c
d
e
f
g
h
i

Tinput
0
1
2
3
4
5
6
7
8

Tzlout
0
3
6
1
4
7
2
5
8

Tdiff
0
2
4
-2
0
2
-4
-2
0

Toutput
4
7
10
5
8
11
6
9
12

Life
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

+4

Output time 
with zero delay
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Circular Life-Time Chart
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Data Allocation

• Determine the min. number of registers
Input each variable at the time its life starts. If more than 
one use multiple registers such that the longest lifetime 
is allocated to the initial register.
Each variable is allocated in a forward manner until it is 
dead or reaches the last register
Allocation is periodic, all allocation to current iteration 
repeats itself after after N
If reaches the last register and not dead allocate 
backward ((if more than one, choose one that has been 
allocated backward before), then forward again and so 
on.
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Cycle     I/P       R1      R2      R3      R4      O/P

0

1

2

3

4

5

6

7

8

9

10

11

12

a
b     a  

i i 

c        b        a
d        c        b       a
e        d        c       b       a        a
f        e        d c       b        d
g f        e       b       c        g

i        h       c       f        h
i        h        c       f      e e
h        c        f      e       b b

i        f f 

i       f        c c

Allocation table                    
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Cycle    input      R1        R2        R3           Output
0

1

2

3

4

5

6

7

a 
b         a 

b       a 
b         a 

c                   a b       a
c        b  

c        b  
b c b,c

0
1
2
3
4
5
6
7

Cycles   a      b      c    #live   

0
1
2
2
2
2
2+0
2+1=3

YORK UNIVERSITY CSE4210

Synthesis
Cycle     I/P       R1      R2      R3      R4      O/P

0

1

2

3

4

5

6

7

8

9

10

11

12

a
b     a  

i i 

c        b        a
d        c        b       a
e        e        e       e       a        a
f        e        d c       b        d
g f        e       b       c        g

i        h c       f        h
i        h        c       f      e e
h        c        f      e       b b

i        f f 

i       f        c c
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Example

Cycle    input      R1        R2        R3           Output
0

1

2

3

4

5

6

7

a 
b         a 

b       a 
b         a 

c                   a b       a
c        b  

c        b  
b       c b,c
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Register Minimization for Folded 
Architecture

• Perform retiming for folding
• Write the folding equations
• Use the folding equations to construct a lifetime 

table
• Draw the lifetime chart and determine the 

minimum number of registers
• Perform forward-backward register allocation
• Draw the folded architecture



16

YORK UNIVERSITY CSE4210

Example
• Consider the Biquad

example.
• Node u is created at time 

u+Pu

• Node u is consumed at 
time = u+Pu + 
maxv(DF(U→V)

• We have already solved 
this example and we got 
the folding equations
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Biquad FilterDF(U,V)=Nw(e)-Pu+v-u
Node Tinput → Toutput
1 4 → 9
2                       -----
3   3 → 3
4 1 → 1
5 2 → 2
6 4 → 4
7 5 → 6
8 3 → 4

Node U produces data at 
time=u+Pu

)}({max

 Unodefor  Tout
VUDPu F

v
u →++
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Biquad Filter
Node Tinput → Toutput

1 4 → 9

2                       -----

3   3 → 3

4 1 → 1

5 2 → 2

6 4 → 4

7 5 → 6

8 3 → 4

YORK UNIVERSITY CSE4210

Biquad Filter
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{2}
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Explanation
• Now, we build the architecture (final 

architecture is in the previous slide) by 
considering every edge in the graph.

• Combining these partial architecture to 
make the final one.
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

Considering 1 2 (Adder to adder)

N1 is produced at time 0 (4l+0) needed by 2 at time 1 (a delay of 1)

An edge from R1 (where the result will be after 1 time unit) to node 
2 (adder) that switches at time 4l+1

Also, input is switched at 4l+3 and output at 4l+2

{1}

{3}

{2}

{0}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 5 (adder to multiplier)

That require 0 delay (DF(1 5) ) created at 0 consumed at 0

A path from output of adder to input of multiplier switches at 4l+0

{0}

{0}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 6  adder to multiplier

N1 produces at time 0, needed after a delay of 2 at multiplier at 2

Need a switch to move it from adder to R1 at 0, R1 to R2 at 1, R2 to 
multiplier at 2

{0}

{1}
{2}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 7 delay of 3

N1 produced at0, needed after 3 at 3

We need a switch to go from adder to R1 at 0, R1 R2 at 1, R2 
R2 at 2, R2 multiplier at 3

{0}

{1}

{2}
{3}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 8 delay of 5

N1 produces result at 0, needed after 5 at multiplier 4l+1

A switch Adder to R1 at 0, R1 R2 at 1, R2 R2 at 2, R2 R2 at 
3. R2 R2 at 4 (4l+0), R2 Multiplier at 5 (4l+1)

{0}

{1}

{2,3,0}
{1}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

3 1 delay of 0

N3 produces result at 3, needed at 3 at adder

{3}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

4 2 delay of 0

N4 produces result at 1, needed at adder at 1 no delay

Switch from output of adder to input of adder with no delay at 1

{1}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

5 3 delay of 0

N5 produces at 2, needed at adder with no delay

A switch from output of multiplier to input of adder at 2

{2}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

6 4 delay of 0

N6 produces at 4 i.e. 0 (2=2) needed with no delay at adder

A switch from output of multiplier to input of adder at 0

{0}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

7 3 delay of 1

N7 produces at (3+2)=1, needed after 1 delay at adder

A switch from multiplier to R1 at 1, R1 adder at 2

{1}

{2}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

8 4 delay of 1

N8 produces at (1+2)=3 needed after one delay to input of adder

A switch from Multiplier R1 at 3 and R1 adder at 0

{3}

{0}
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⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

Superimposing the switches produces the final architecture

Note that constants a,b,c,d are muxed into multiplier at {0,2,3,1}

{0, 2, 3, 1}

{0,1,2}

{3}

{0,2,3}
{01,2,3}

{0,2} {1,3}
{1,3}

{0}

{0}

{2}


