
1

YORK UNIVERSITY CSE4210

Chapter 6
Folding

Mokhtar AboelazeCSE4210 Winter 2012

YORK UNIVERSITY CSE4210

Folding
• The folding transformation is used to

systematically determine the control circuits in
DSP architecture where multiple algorithm
operations are time-multiplexed to a single
functional unit.

• The hardware is reduced by a factor of N, the
time is increased by the same factor.

• May lead to a large number of registers, thus
registers minimization techniques are studied.

2

YORK UNIVERSITY CSE4210

Example

A

C
B

D

Cycle A B E C D
0 a(0) b(0) a(0)+b(0) ⎯ ⎯
1 a(0)+b(0) c(0) a(0)+b(0)+c(0) a(0)+b(0) ⎯
2 a(1) b(1) a(1)+b(1) a(0)+b(0)+c(0) a(0)+b(0)+c(0)
3 a(1)+b(1) c(1) a(1)+b(1)+c(1) a(1)+b(1) ⎯
4 a(2) b(2) a(2)+b(2) a(1)+b(1)+c(1) a(1)+b(1)+c(1)
5 a(2)+b(2) c(2) a(2)+b(2)+c(2) a(2)+b(2) ⎯
6 a(3) b(3) a(3)+b(3) a(2)+b(2)+c(2) a(2)+b(2)+c(2)

E

Valid for 2 cycles

YORK UNIVERSITY CSE4210

Folding Transformation
• The objective is to provide a systematic

technique for designing control circuits for
hardware where several algorithm
operations are mapped to the same piece
of hardware via time-multiplexing of
course.

• We start with a DFG for the algorithm.
• We need the following definitions

3

YORK UNIVERSITY CSE4210

Folding Transformation
• U and V are two nodes in the original DFG.
• U and V are connected via an edge e with a delay w(e)

U w(e) V
• Folding factor is N
• Node (computation) U lth iteration is performed at time Nl

+u
• Node (computation) V lth iteration is performed at time Nl

+v
• Hu and Hv are the hardware units U and V are performed

at
• Hu and Hv are pipelined by Pu and Pv stages

YORK UNIVERSITY CSE4210

Folding Transformation

4

YORK UNIVERSITY CSE4210

Folding Transformation
• The results of the lth iteration of node U is

available at Nl+u+Pu

• Since there are w(e) delays between U
and V, the result is needed in the (l+w(e))th

iteration of V, which is executed at
N(l+w(e))+v

[] []
uvPeNw

uPNlvewlNVUD

u

u
e

F

−+−=
++−++=⎯→⎯

)(
)(()(

YORK UNIVERSITY CSE4210

Folding Transformation

• Folding Set
– Is an ordered set of operations executed by the same

functional unit.
– Each folding set contains N entries (some of which

may be null operations)
– The Jth position within the folding set is executed in

the time partition j
– For example the folding set S1= {A1, φ, A2} for N=3
– A1 is performed during the 0th time partition S1|0, while

A2 is done in the 2nd time partition S1|2
– Folding set is obtained using a scheduling and

allocation algorithm

5

YORK UNIVERSITY CSE4210

Example
N=4

Folding sets are
adder S1={4,2,3,1} and
a multiplier
S2={5,8,6,7}

Addition takes 1 and
multiplication 2 time
units

1-stage adder and 2-
stage multiplier

YORK UNIVERSITY CSE4210

Example

uvPeNwVUD u
e

F −+−=⎯→⎯)()(

6

YORK UNIVERSITY CSE4210

Example
Adder

Adder After delay of

Arrives at

YORK UNIVERSITY CSE4210

Folding Transformation

• What if some of the DF’s are negative
• Of course we can not implement that
• A condition: DF ≥ 0
• We can use retiming of the original graph

to get a valid DF‘s
• Recall, retiming equation U V

0)()()()(≥−+= UrVrewewr

7

YORK UNIVERSITY CSE4210

Folding Transformation

()

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ⎯→⎯
≤−

⎯→⎯
≤−

≥−+⎯→⎯=⎯→⎯′

−+−+−=⎯→⎯′

−+−−+=⎯→⎯′

−+−=⎯→⎯

⎯→⎯′

N
VUDVrUr

N
VUDVrUr

UNrVNrVUDVUD

UNrVNruvPeNwVUD

uvPUrVrewNVUD

uvPeNwVUD

VUD

e
F

e
F

e
F

e
F

u
e

F

u
e

F

u
e

F

e
F

)()()(

)()()(

0)()()()(

)()()()(

)()()()(

)()(

graph retimed folded thein delays theis)(

YORK UNIVERSITY CSE4210

Folding Transformation
• We can use the techniques in Chapter 4 to

solve for retiming.
• Then we fold the graph valid

transformation

8

YORK UNIVERSITY CSE4210

Exercise

YORK UNIVERSITY CSE4210

Exercise⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ⎯→⎯
≤−

N
VUDVrUr

e
F)()()(

9

YORK UNIVERSITY CSE4210

Exercise

YORK UNIVERSITY CSE4210

Solution
• One solution is
• r(1)=-1 r(2)=0 r(3)=0 r(4)=0
• r(5)=0 r(6)=-1 r(7)=-1 r(8)=-1
• Can we reach the above solution from the

method we studies in this course? NO
• Another solution
• r(1)=-1 r(2)=0 r(3)=-1 r(4)=0
• r(5)=-1 r(6)=-1 r(7)=-2 r(8)=-2

10

YORK UNIVERSITY CSE4210

Registers Minimization
Techniques

• The objective is to minimize the number of
registers in the implementation of a DSP
algorithm. Topics

Life time analysis
Data allocation using forward-backward
register allocation
Register minimization in folded architecture
Examples

YORK UNIVERSITY CSE4210

Life Time Analysis
• A data sample (variable) is alive from the time it is

produced, until the time it is consumed (dead).
• During that time, the variable is stored in a register.
• The maximum number of live variables at any time is the

minimum number of registers required for the
implementation.

• We use the convention that the variable is not alive
during the cycle it is produced in, and alive during the
cycle it is consumed in.

11

YORK UNIVERSITY CSE4210

N=6

Cycle
0
1
2
3
4
5
6
7

#live
0
1
2
2
2
2
2
2

a b c

2

periodic with a
period of N=6

YORK UNIVERSITY CSE4210

Example

i h g f e d c b a
Matrix

Transpose

i f c h e b g d a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ihg
fed
cba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ifc
heb
gdaTranspose

12

YORK UNIVERSITY CSE4210

Example

Sample
a
b
c
d
e
f
g
h
i

Tinput
0
1
2
3
4
5
6
7
8

Tzlout
0
3
6
1
4
7
2
5
8

Tdiff
0
2
4
-2
0
2
-4
-2
0

Toutput
4
7
10
5
8
11
6
9
12

Life
0→4
1 →7
2 →10
3 →5
4 →8
5 →11
6 →6
7 →9
8 →12

+4

Output time
with zero delay

YORK UNIVERSITY CSE4210

Circular Life-Time Chart

13

YORK UNIVERSITY CSE4210

Data Allocation

• Determine the min. number of registers
Input each variable at the time its life starts. If more than
one use multiple registers such that the longest lifetime
is allocated to the initial register.
Each variable is allocated in a forward manner until it is
dead or reaches the last register
Allocation is periodic, all allocation to current iteration
repeats itself after after N
If reaches the last register and not dead allocate
backward ((if more than one, choose one that has been
allocated backward before), then forward again and so
on.

YORK UNIVERSITY CSE4210

Cycle I/P R1 R2 R3 R4 O/P

0

1

2

3

4

5

6

7

8

9

10

11

12

a
b a

i i

c b a
d c b a
e d c b a a
f e d c b d
g f e b c g

i h c f h
i h c f e e
h c f e b b

i f f

i f c c

Allocation table

14

YORK UNIVERSITY CSE4210

Cycle input R1 R2 R3 Output
0

1

2

3

4

5

6

7

a
b a

b a
b a

c a b a
c b

c b
b c b,c

0
1
2
3
4
5
6
7

Cycles a b c #live

0
1
2
2
2
2
2+0
2+1=3

YORK UNIVERSITY CSE4210

Synthesis
Cycle I/P R1 R2 R3 R4 O/P

0

1

2

3

4

5

6

7

8

9

10

11

12

a
b a

i i

c b a
d c b a
e e e e a a
f e d c b d
g f e b c g

i h c f h
i h c f e e
h c f e b b

i f f

i f c c

15

YORK UNIVERSITY CSE4210

Example

Cycle input R1 R2 R3 Output
0

1

2

3

4

5

6

7

a
b a

b a
b a

c a b a
c b

c b
b c b,c

YORK UNIVERSITY CSE4210

Register Minimization for Folded
Architecture

• Perform retiming for folding
• Write the folding equations
• Use the folding equations to construct a lifetime

table
• Draw the lifetime chart and determine the

minimum number of registers
• Perform forward-backward register allocation
• Draw the folded architecture

16

YORK UNIVERSITY CSE4210

Example
• Consider the Biquad

example.
• Node u is created at time

u+Pu

• Node u is consumed at
time = u+Pu +
maxv(DF(U→V)

• We have already solved
this example and we got
the folding equations

YORK UNIVERSITY CSE4210

Biquad FilterDF(U,V)=Nw(e)-Pu+v-u
Node Tinput → Toutput
1 4 → 9
2 -----
3 3 → 3
4 1 → 1
5 2 → 2
6 4 → 4
7 5 → 6
8 3 → 4

Node U produces data at
time=u+Pu

)}({max

 Unodefor Tout
VUDPu F

v
u →++

17

YORK UNIVERSITY CSE4210

Biquad Filter
Node Tinput → Toutput

1 4 → 9

2 -----

3 3 → 3

4 1 → 1

5 2 → 2

6 4 → 4

7 5 → 6

8 3 → 4

YORK UNIVERSITY CSE4210

Biquad Filter

18

YORK UNIVERSITY CSE4210

{2}

YORK UNIVERSITY CSE4210

Explanation
• Now, we build the architecture (final

architecture is in the previous slide) by
considering every edge in the graph.

• Combining these partial architecture to
make the final one.

19

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

Considering 1 2 (Adder to adder)

N1 is produced at time 0 (4l+0) needed by 2 at time 1 (a delay of 1)

An edge from R1 (where the result will be after 1 time unit) to node
2 (adder) that switches at time 4l+1

Also, input is switched at 4l+3 and output at 4l+2

{1}

{3}

{2}

{0}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 5 (adder to multiplier)

That require 0 delay (DF(1 5)) created at 0 consumed at 0

A path from output of adder to input of multiplier switches at 4l+0

{0}

{0}

20

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 6 adder to multiplier

N1 produces at time 0, needed after a delay of 2 at multiplier at 2

Need a switch to move it from adder to R1 at 0, R1 to R2 at 1, R2 to
multiplier at 2

{0}

{1}
{2}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 7 delay of 3

N1 produced at0, needed after 3 at 3

We need a switch to go from adder to R1 at 0, R1 R2 at 1, R2
R2 at 2, R2 multiplier at 3

{0}

{1}

{2}
{3}

21

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

1 8 delay of 5

N1 produces result at 0, needed after 5 at multiplier 4l+1

A switch Adder to R1 at 0, R1 R2 at 1, R2 R2 at 2, R2 R2 at
3. R2 R2 at 4 (4l+0), R2 Multiplier at 5 (4l+1)

{0}

{1}

{2,3,0}
{1}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

3 1 delay of 0

N3 produces result at 3, needed at 3 at adder

{3}

22

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

4 2 delay of 0

N4 produces result at 1, needed at adder at 1 no delay

Switch from output of adder to input of adder with no delay at 1

{1}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

5 3 delay of 0

N5 produces at 2, needed at adder with no delay

A switch from output of multiplier to input of adder at 2

{2}

23

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

6 4 delay of 0

N6 produces at 4 i.e. 0 (2=2) needed with no delay at adder

A switch from output of multiplier to input of adder at 0

{0}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

7 3 delay of 1

N7 produces at (3+2)=1, needed after 1 delay at adder

A switch from multiplier to R1 at 1, R1 adder at 2

{1}

{2}

24

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

8 4 delay of 1

N8 produces at (1+2)=3 needed after one delay to input of adder

A switch from Multiplier R1 at 3 and R1 adder at 0

{3}

{0}

YORK UNIVERSITY CSE4210

⊕ D ⊗ 2DR1 R2

IN

OUT

a b c d

Superimposing the switches produces the final architecture

Note that constants a,b,c,d are muxed into multiplier at {0,2,3,1}

{0, 2, 3, 1}

{0,1,2}

{3}

{0,2,3}
{01,2,3}

{0,2} {1,3}
{1,3}

{0}

{0}

{2}

