

YORK UNIVERSITY

CSE4210

Folding Transformation

- U and V are two nodes in the original DFG.
- U and V are connected via an edge e with a delay w(e)
 U →w(e) V
- Folding factor is N
- Node (computation) U *lth* iteration is performed at time N*l* +u
- Node (computation) V lth iteration is performed at time Nl +v
- + ${\rm H_u}$ and ${\rm H_v}$ are the hardware units U and V are performed at
- H_u and H_v are pipelined by P_u and P_v stages

YORK UNIVERSITY

Folding Transformation

CSE4210

$$D'_{F}(U \xrightarrow{e} V) \text{ is the delays in the folded retimed graph}$$

$$D_{F}(U \xrightarrow{e} V) = Nw(e) - P_{u} + v - u$$

$$D'_{F}(U \xrightarrow{e} V) = N(w(e) + r(V) - r(U)) - P_{u} + v - u$$

$$D'_{F}(U \xrightarrow{e} V) = Nw(e) - P_{u} + v - u + Nr(V) - Nr(U)$$

$$D'_{F}(U \xrightarrow{e} V) = D_{F}(U \xrightarrow{e} V) + Nr(V) - Nr(U) \ge 0$$

$$r(U) - r(V) \le \frac{D_{F}(U \xrightarrow{e} V)}{N}$$

$$r(U) - r(V) \le \left\lfloor \frac{D_{F}(U \xrightarrow{e} V)}{N} \right\rfloor$$

YORK UNIVER	SITY	CSE4210			
$r(U) - r(V) \le \left\lfloor \frac{D_F(U \stackrel{e}{\longrightarrow} V)}{N} \right\rfloor \text{Exercise}$					
Edge	Folding Equation	Retiming for Folding Constraint			
$\overline{1 \rightarrow 2}$	$D_F(1 \to 2) = -3$	$r(1) - r(2) \leq -1$			
$1 \rightarrow 5$	$D_F(1 \to 5) = 0$	$r(1) - r(5) \le 0$			
1 ightarrow 6	$D_F(1 \rightarrow 6) = 2$	$r(1)-r(6)\leq 0$			
$1 \rightarrow 7$	$D_F(1 \rightarrow 7) = 7$	$r(1)-r(7)\leq 1$			
$1 \rightarrow 8$	$D_F(1 \rightarrow 8) = 5$	$r(1) - r(8) \le 1$			
3 ightarrow 1	$D_F(3 \rightarrow 1) = 0$	$r(3) - r(1) \le 0$			
$4 \rightarrow 2$	$D_F(4 \rightarrow 2) = 0$	$r(4) - r(2) \le 0$			
$5 \rightarrow 3$	$D_F(5 \rightarrow 3) = 0$	$r(5) - r(3) \le 0$			
$6 \rightarrow 4$	$D_F(6 \rightarrow 4) = -4$	$r(6) - r(4) \leq -1$			
$7 \rightarrow 3$	$D_F(7 \rightarrow 3) = -3$	$r(7) - r(3) \leq -1$			
$8 \rightarrow 4$	$D_F(8 \rightarrow 4) = -3$	$r(8) - r(4) \leq -1$			
	<u></u>				

YORK UNIVERSITY

CSE4210

Registers Minimization Techniques

- The objective is to minimize the number of registers in the implementation of a DSP algorithm. Topics
 - ➤Life time analysis
 - Data allocation using forward-backward register allocation
 - >Register minimization in folded architecture
 - ≻Examples

YORK UNIVERSITY		CSE4210				
Biquad Filter						
	Node T _{inpu}	$t \rightarrow T_{output}$				
$D_{rr}(1 \rightarrow 2) = 4(1) - 1 + 1 - 3 = 1$	1	$4 \rightarrow 9$				
$D_F(1 \to 5) = 4(1) - 1 + 0 - 3 = 0$	2					
$D_F(1 \to 6) = 4(1) - 1 + 2 - 3 = 2$	3	$3 \rightarrow 3$				
$D_F(1 \to 7) = 4(1) - 1 + 3 - 3 = 3$	4	$1 \rightarrow 1$				
$D_F(1 \to 8) = 4(2) - 1 + 1 - 3 = 5$	5	$2 \rightarrow 2$				
$D_F(3 \to 1) = 4(0) - 1 + 3 - 2 = 0$	6	$4 \rightarrow 4$				
$D_F(4 \rightarrow 2) = 4(0) - 1 + 1 - 0 = 0$ $D_F(5 \rightarrow 3) = 4(0) - 2 + 2 - 0 = 0$	7	$5 \rightarrow 6$				
$D_F(6 \to 4) = 4(1) - 2 + 0 - 2 = 0$	8	$3 \rightarrow 4$				
$D_F(7 \to 3) = 4(1) - 2 + 2 - 3 = 1$						
$D_F(8 \to 4) = 4(1) - 2 + 0 - 1 = 1.$	T _{out} for node U					
Node U produces data at	$u + P_u + \max \{L\}$	$D_{F}(U \rightarrow V)$				
time=u+P _u	v					

YORK UNIVERSITY			CSE4210
Biquad	Filte	er	
	Node	$T_{input} \rightarrow T_{output}$	
cycle 1 2 3 4 5 6 7 8 # live	1	$4 \rightarrow 9$	
$\begin{array}{c} 1 \\ 2 \end{array} \xrightarrow{} \begin{array}{c} \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \end{array} = \begin{array}{c} 0 \\ 0 \end{array}$	2		
$\begin{array}{c} 3\\ 4 \end{array} \xrightarrow{} \begin{array}{c} \mathbf{X} \\ \mathbf{X} \\ \mathbf{Y} \end{array} \xrightarrow{} \begin{array}{c} 0\\ 1+0=1 \end{array}$	3	$3 \rightarrow 3$	
$5 \\ 6 \\$	4	$1 \rightarrow 1$	
1+0=1 1+1=2 1+1=2 1+1=2	5	$2 \rightarrow 2$	
	6	$4 \rightarrow 4$	
	7	$5 \rightarrow 6$	
	8	$3 \rightarrow 4$	

