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Introduction
• Retiming is a transformation technique that is 

used to change the locations of delay elements 
in a circuit without changing its functionality.

• Can be used to reduce the number of registers, 
or the clock cycle

• Could be considered as a generalization of the 
pipelining technique studies earlier
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Definitions
• Mapping G to Gr

• U and V are nodes, e is an edge
• r(v) is a retiming value
• w(e) is the weight of edge e in graph G
• wr(e) is the weight of edge e in graph Gr

wr(e)=w(e)+r(V)-r(U)
• A solution is feasible if all wr ≥ 0
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Example
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Definitions and Properties
• The weight of a retimed Path
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Definitions and Properties
• Retiming does not change the number of 

delays in a cycle
– Put k=0 in the previous equation

• Retiming does not alter the iteration bound 
in a DFG

• Adding a constant j to the retiming value of 
each node does not change the mapping 
from G to Gr
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Solving Systems of Inequalities
• From the constraints, we end up with a system 

of equations in the form
ri-rj ≤ k

• Any solution that satisfy the constraints is a 
viable solution.

• A procedure to solve the system
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Solving Systems of Inequalities
• Draw a constraints graph

– Draw the node i for each of the N variables 1 2 .. N
– Draw the node N+1
– For each inequality ri-rj ≤ k, draw an edge from node  j 

→ i with weight k
– For each node i=1,2,..N draw an edge N+1 → i with 

weight 0
• Solve 

– The system has a solution iff the constraints graph 
has no negative cycle. Bellman Ford Algorithm

– One solution is the min. length from node N+1 to i 
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Cutset Retiming
• Cutset: A set of edges if removed, the graph G is 

partitioned into 2 graphs G1,G2 .
• Cutset retiming is done by adding k delays to all 

the edges in the cutset from G1 to G2, and 
removing k delays from the edges from G2 to G1
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Cutset Retiming
• Pipelining is a special case where there are no 

nodes from G2 to G1 (no loops).
• Cutset is combined with slow-down, where first 

an N-slow-down version of the graph is created 
by changing every D to ND, then retiming is 
used.

• With the N-slow-down version, the input is 
slowed down to (N-1 null operation or 0 samples 
must be interleaved with input data
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Example
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Retiming for Clock Period 
Minimization

• The min. clock time is the computation 
time of the critical path.

• Critical path is the path with the longest 
computation time and no delay.

• Retiming could be used to minimize clock 
period.
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Minimize Clock Period
• Min. feasible clock period of a graph G is 

Φ(G)=max {t(p): w(p)=0}
• W(U,V) is the minimum number of 

registers on any path from U → V
• D(U,V) is the max. computation time 

among all paths from U → V with weight 
W(U,V)
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Minimize Clock Period
1. Let M=tmaxn , where tmax is the max. 

computation time of any node in G, n =number 
of nodes in G

2. Form a new graph G’ which is the same as G 
except the edge weights are replaced by 
w’(e)=Mw(e)-t(U) (e=U → V)

3. Solve for all-pairs shortest path on G’ (SUV)
4. If U ≠ V, then W(U,V)= ⎡SUV/M⎤ and 

D(U,V)=M×W(U,V)-SUV+t(V)
5. IF U=V, W(U,V)=0, D(U,V)=t(U)
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Minimize Clock Period
• Then, we use W(U,V),D(U,V) to find if there a 

retiming solution such that Φ(G) ≤ c
• Construct the following set of constraints
• Feasibility constraints

r(U)-r(V) ≤ w(e) for every edge in G
• Critical path constraint

r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G such that 
D(U,V)>c (cycle time).

• Solve to get r(.) (retiming values)
wr(p)=w(p)+r(b)-r(a)
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Example 
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U ≠ V, then W(U,V)= ⎡SUV/M⎤
D(U,V)=M×W(U,V)-SUV+t(V)
U=V   T(U)
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Example, cont.

r(1)-r(3) ≤ 1
r(1)-r(4) ≤ 2
r(2)-r(1) ≤ 1
r(3)-r(2) ≤ 0
r(4)-r(2) ≤ 0

Feasibility 
constraints

C=3

All r(.) = 0, means the graph 
already has a cycle of 3
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r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1

Critical path 
constraints
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r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G
such that D(U,V)>3
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Example
• Solving the above inequalities, results in a 

solution
• r(1)=r(2)=r(3)=r(4)=0
• The graph already has a critical path =3
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r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1
r(1)-r(3) ≤ 0
r(1)-r(4) ≤ 1
r(3)-r(2) ≤ -1
r(4)-r(2) ≤ -1

Critical path 
constraints
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r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G
such that D(U,V)>2
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Redoing for c=2
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Example
• Redo, for c=2
• r(2)=0, r(1)=r(3)=r(4)=-1
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