

YORK UNIVERSITY

Retiming for Clock Period

Minimization

- The min. clock time is the computation time of the critical path.
- Critical path is the path with the longest computation time and **no delay**.
- Retiming could be used to minimize clock period.

$ \begin{array}{c} (1) \\ 1 \\ 1 \\ 7 \\ (1) \\ 7 \\ (1) \\ 7 \\ (1) \\ 7 \\ (1) \\ 7 \\ (1) \\ 7 \\ (1) \\ 7 \\ (1) $	YORK UNIV	ERS	ITY								CSE42	210
$\begin{array}{c} (1) \\ 1 \\ 7 \\ 7 \\ 7 \\ (1) \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$						S _{UV}	1	2	3	4		
$ \begin{array}{c} 2 & 7 & 12 & 14 & 22 \\ 3 & 5 & -2 & 12 & 20 \\ 4 & 5 & -2 & 12 & 20 \\ 4 & 5 & -2 & 12 & 20 \\ 4 & 5 & -2 & 12 & 20 \\ 4 & 5 & -2 & 12 & 20 \\ \end{array} $ $ \begin{array}{c} D(U,V) = M \times W(U,V) - S_{UV} + t(V) \\ U = V & T(U) \\ \hline \end{array} $ $ \begin{array}{c} D(U,V) = M \times W(U,V) - S_{UV} + t(V) \\ U = V & T(U) \\ \hline \end{array} $ $ \begin{array}{c} D(U,V) = M \times W(U,V) - S_{UV} + t(V) \\ U = V & T(U) \\ \hline \end{array} $	(1) (1)					1	12	5	7	15		
$(1) \begin{array}{c} 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$	7 7					2	7	12	14	22		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \hline \\ -2 \\ \hline \\ \hline \\ -2 \\ \hline \\ \hline \\ \hline \\ (2) \\ \hline \\ \hline$:	3	2)	5	3	5	-2	12	20		
$ \begin{array}{c} U \neq V, \text{ then } W(U,V) = \overline{SUV/M7} \\ \hline W(U,V) & 1 & 2 & 3 & 4 \\ \hline 1 & 0 & 1 & 1 & 2 \\ \hline 2 & 1 & 0 & 2 & 3 \\ \hline & & & & & & & & & & & \\ \end{array} $	-2					4	5	-2	12	20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$U \neq V$, then	W(L	-(4) (,,V)=	(2) / <i>SUV</i>	/ M 7	D(U,V) $U=V$	D = M T(U)	×W(U	Y, V)-S	$S_{UV}+t($	V)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W(U,V)	1	2	3	4	D(L	J,V)	1	2	3	4	
2 1 0 2 3 2 2 1 4 4	1	0	1	1	2	1		1	4	3	3	
	2	1	0	2	3	2		2	1	4	4	
$\begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 3 \end{bmatrix}$	3	1	0	0	3	3		4	3	2	6	
4 1 0 2 0 4 3 6 2	4	1	0	2	0	4		4	3	6	2	

YORK UNIVERSITY		CSE4210
	Example, cont.	
Feasibility constraints	C=3	
r(1)-r(3) ≤ 1		
$r(1)$ - $r(4) \le 2$		
r(2)-r(1) ≤ 1		
$r(3)$ - $r(2) \leq 0$		
$r(4)\text{-}r(2) \leq 0$		
All r(.) = 0, m already has a	eans the graph a cycle of 3	

I

YORK UNIVERSITY									CS	E4210
Critical path constraints	r(U)-r(V) such th	7) ≤ at <i>L</i>	W() (U,	U,V) V)>.)-1 fo 3	or all nod	es L	7 , V i i	n G	
	D(U,V)	1	2	3	4					
$r(1)-r(2) \le 0$ $r(2)-r(3) \le 1$	1	1	4	3	3					
$r(2)-r(3) \le 1$ $r(2)-r(4) \le 2$	2	2	1	4	4					
$r(3)-r(1) \le 0$	3	4	3	2	6	W(U,V)	1	2	3	4
r(3)-r(4) ≤ 2 r(4)-r(1) ≤ 0	4	4	3	6	2	1	0	1	1	2
$r(4)-r(3) \le 1$						2	1	0	2	3
						3	1	0	0	3
						4	1	0	2	0

YORK UNIVERSITY									CS	E4210	
Critical path constraintsRedoing for c=2 $r(U)-r(V) \le W(U,V)-1$ for all nodes U,V in G such that $D(U,V)>2$											
	D(U,V)	1	2	3	4						
$r(1)-r(2) \le 0$ $r(2) = r(2) \le 1$	1	1	4	3	3						
$r(2)-r(3) \ge r$	2	2	1	4	4						
$r(3)-r(1) \le 0$	3	4	3	2	6	W(U,V)	1	2	3	4	
$r(3)-r(4) \le 2$ $r(4)-r(1) \le 0$	4	4	3	6	2	1	0	1	1	2	
$r(4)-r(3) \le 0$	<u> </u>	<u> </u>	<u> </u>	<u> </u>		2	1	0	2	3	
$r(1)-r(3) \le 0$ r(1)-r(4) < 1						3	1	0	0	3	
$r(3)-r(2) \le -1$						4	1	0	2	0	
$r(4)-r(2) \le -1$							1				

