
1

YORK UNIVERSITY CSE4210

Chapter 3
Pipelining and parallel Processing

Mokhtar AboelazeCSE4210 Winter 2012

YORK UNIVERSITY CSE4210

Introduction
• Retiming is a transformation technique that is

used to change the locations of delay elements
in a circuit without changing its functionality.

• Can be used to reduce the number of registers,
or the clock cycle

• Could be considered as a generalization of the
pipelining technique studies earlier

2

YORK UNIVERSITY CSE4210

Introduction

5D 3D
D 3D

2D

⊗

⊕

⊕ ⊗

x(n) y(n)

b

aD D

2D

⊗

⊕

⊕ ⊗

x(n) y(n)

b

a

D

D

2D

D

(1)

(1)

(1)

(1) (2)

(2)(2)

(2)

y(n)=ay(n-2) + by(n-3) +x (n)

YORK UNIVERSITY CSE4210

Introduction

⊗

⊕

⊕ ⊗

x(n) y(n)

b

aD D

2D

⊗

⊕

⊕ ⊗

x(n) y(n)

b

a

D

D

2D

D

(1)

(1)

(1)

(1) (2)

(2)(2)

(2)

y(n)=ay(n-2) + by(n-3) +x (n)

w(n)=ay(n-1)+by(n-2)

y(n)=w(n-1) +x (n)

w1(n)=ay(n-1)

w2(n)=by(n-2)

y(n)=w(n-1) +x (n)Critical path = 3

Critical path = 2

3

YORK UNIVERSITY CSE4210

Definitions
• Mapping G to Gr

• U and V are nodes, e is an edge
• r(v) is a retiming value
• w(e) is the weight of edge e in graph G
• wr(e) is the weight of edge e in graph Gr

wr(e)=w(e)+r(V)-r(U)
• A solution is feasible if all wr ≥ 0

YORK UNIVERSITY CSE4210

Example

⊗

⊕

⊕ ⊗

x(n) y(n)

b

aD D

2D

(1)

(1)

(2)

(2)

⊗

⊕

⊕ ⊗

x(n) y(n)

b

a

D

D

2D

D

(1)

(1) (2)

(2)

1010)4()2()24()24(

1010)3()2()23()23(

1)2(0)4()3()1(

=−+=−+⎯→⎯=⎯→⎯

=−+=−+⎯→⎯=⎯→⎯

====

rrww

rrww

rrrr

ee
r

ee
r

1

2

4

3

4

YORK UNIVERSITY CSE4210

Definitions and Properties
• The weight of a retimed Path

)0()()(
)0()()()()(

)1()()()2()3()()1()2()(
)()()(

13221

13221

13221

321

rkrpwp
rkrVVwVVwVVwp

krkrVVwrrVVwrrVVwp
VVwVVwVVwp

VVVVp

kk

kk

kkrrr

k

−+=
−+→+→+→=

−−+→+−+→+−+→=
→+→+→=

→→=

−

−

−

YORK UNIVERSITY CSE4210

Definitions and Properties
• Retiming does not change the number of

delays in a cycle
– Put k=0 in the previous equation

• Retiming does not alter the iteration bound
in a DFG

• Adding a constant j to the retiming value of
each node does not change the mapping
from G to Gr

5

YORK UNIVERSITY CSE4210

Solving Systems of Inequalities
• From the constraints, we end up with a system

of equations in the form
ri-rj ≤ k

• Any solution that satisfy the constraints is a
viable solution.

• A procedure to solve the system

YORK UNIVERSITY CSE4210

Solving Systems of Inequalities
• Draw a constraints graph

– Draw the node i for each of the N variables 1 2 .. N
– Draw the node N+1
– For each inequality ri-rj ≤ k, draw an edge from node j

→ i with weight k
– For each node i=1,2,..N draw an edge N+1 → i with

weight 0
• Solve

– The system has a solution iff the constraints graph
has no negative cycle. Bellman Ford Algorithm

– One solution is the min. length from node N+1 to i

6

YORK UNIVERSITY CSE4210

Example
1

1 3

2

4

5
0

0
00

-14

5
0 2

r1-r2 ≤ 0

r3-r1 ≤ 5

r4-r1 ≤ 4

r4-r3≤ -1

r3-r2 ≤ 2

YORK UNIVERSITY CSE4210

Example
1

1 3

2

4

5
0

0
00

-14

5
0 2

r1-r2 ≤ 0

r3-r1 ≤ 5

r4-r1 ≤ 4

r4-r3≤ -1

r3-r2 ≤ 2

7

YORK UNIVERSITY CSE4210

Cutset Retiming
• Cutset: A set of edges if removed, the graph G is

partitioned into 2 graphs G1,G2 .
• Cutset retiming is done by adding k delays to all

the edges in the cutset from G1 to G2, and
removing k delays from the edges from G2 to G1

{ } { })(min)(min
1221

ewkew
GGGG ee ⎯→⎯⎯→⎯

≤≤−

YORK UNIVERSITY CSE4210

Cutset Retiming
• Pipelining is a special case where there are no

nodes from G2 to G1 (no loops).
• Cutset is combined with slow-down, where first

an N-slow-down version of the graph is created
by changing every D to ND, then retiming is
used.

• With the N-slow-down version, the input is
slowed down to (N-1 null operation or 0 samples
must be interleaved with input data

8

YORK UNIVERSITY CSE4210

Example

⊗

⊕

⊕ ⊗

x(n) y(n)

b

aD D

2D

⊗

⊕

⊕ ⊗

x(n) y(n)

b

a

D

D

2D

D

(1)

(1)

(1)

(1) (2)

(2)(2)

(2)

y(n)=ay(n-2) + by(n-3) +x (n)

G2

Clock Cycle ?

removed

YORK UNIVERSITY CSE4210

Example

⊗

⊕

⊕ ⊗

x(n) y(n)

b

aD D

2D

⊗

⊕

⊕ ⊗

x(n) y(n)

b

a

D

D

3D

(1)

(1)

(1)

(1) (2)

(2)(2)

(2)

y(n)=ay(n-2) + by(n-3) +x (n)

G2

Clock Cycle ?

removed

9

YORK UNIVERSITY CSE4210

⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗

⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗

D D D

Critical path
is reduced
from 101
addition + 2
mul to 2 add
and 2 mul.

100 stage lattice filter

D

⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗
⊗⊕

⊕ ⊗2D 2D 2D

2D

2-Slow

D

D D

D
D

D

D

YORK UNIVERSITY CSE4210

Example

⊗ ⊗ ⊗

⊕ ⊕ y(n)

x(n)

b0 b1 b1

⊗ ⊗ ⊗

⊕ ⊕ y(n)

x(n)

b0 b1 b1

D D

D D

DDD

10

YORK UNIVERSITY CSE4210

Retiming for Clock Period
Minimization

• The min. clock time is the computation
time of the critical path.

• Critical path is the path with the longest
computation time and no delay.

• Retiming could be used to minimize clock
period.

YORK UNIVERSITY CSE4210

Minimize Clock Period
• Min. feasible clock period of a graph G is

Φ(G)=max {t(p): w(p)=0}
• W(U,V) is the minimum number of

registers on any path from U → V
• D(U,V) is the max. computation time

among all paths from U → V with weight
W(U,V)

11

YORK UNIVERSITY CSE4210

Minimize Clock Period
1. Let M=tmaxn , where tmax is the max.

computation time of any node in G, n =number
of nodes in G

2. Form a new graph G’ which is the same as G
except the edge weights are replaced by
w’(e)=Mw(e)-t(U) (e=U → V)

3. Solve for all-pairs shortest path on G’ (SUV)
4. If U ≠ V, then W(U,V)= ⎡SUV/M⎤ and

D(U,V)=M×W(U,V)-SUV+t(V)
5. IF U=V, W(U,V)=0, D(U,V)=t(U)

YORK UNIVERSITY CSE4210

Minimize Clock Period
• Then, we use W(U,V),D(U,V) to find if there a

retiming solution such that Φ(G) ≤ c
• Construct the following set of constraints
• Feasibility constraints

r(U)-r(V) ≤ w(e) for every edge in G
• Critical path constraint

r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G such that
D(U,V)>c (cycle time).

• Solve to get r(.) (retiming values)
wr(p)=w(p)+r(b)-r(a)

12

YORK UNIVERSITY CSE4210

Example

D D

2D

(1)

(1)

(2)

(2)

7 7

15

(1)

(1)

(2)

(2)

M=2*4=8

-2

-2

1

2

4

3

1

2 3

4

y(n)=ay(n-2) + by(n-3) +x (n)

Step 1

e = U → V

w’(e)=M × w(e)-t(U)

2×8 -1=15

2×0 -2=-2

YORK UNIVERSITY CSE4210

2012-254

2012-253

22141272

1575121
4321SUV

7 7

15

(1)

(1)

(2)

(2)

-2

-2

1

2 3

4

26344

62343

44122

33411
4321D(U,V)

02014

30013

32012

21101
4321W(U,V)

U ≠ V, then W(U,V)= ⎡SUV/M⎤
D(U,V)=M×W(U,V)-SUV+t(V)
U=V T(U)

13

YORK UNIVERSITY CSE4210

Example, cont.

r(1)-r(3) ≤ 1
r(1)-r(4) ≤ 2
r(2)-r(1) ≤ 1
r(3)-r(2) ≤ 0
r(4)-r(2) ≤ 0

Feasibility
constraints

C=3

All r(.) = 0, means the graph
already has a cycle of 3

YORK UNIVERSITY CSE4210

r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1

Critical path
constraints

26344

62343

44122

33411
4321D(U,V)

r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G
such that D(U,V)>3

02014

30013

32012

21101
4321W(U,V)

14

YORK UNIVERSITY CSE4210

Example
• Solving the above inequalities, results in a

solution
• r(1)=r(2)=r(3)=r(4)=0
• The graph already has a critical path =3

D D

2D

(1)

(1) (2)2

4

3

1

(2)

YORK UNIVERSITY CSE4210

r(1)-r(2) ≤ 0
r(2)-r(3) ≤ 1
r(2)-r(4) ≤ 2
r(3)-r(1) ≤ 0
r(3)-r(4) ≤ 2
r(4)-r(1) ≤ 0
r(4)-r(3) ≤ 1
r(1)-r(3) ≤ 0
r(1)-r(4) ≤ 1
r(3)-r(2) ≤ -1
r(4)-r(2) ≤ -1

Critical path
constraints

26344

62343

44122

33411
4321D(U,V)

r(U)-r(V) ≤ W(U,V)-1 for all nodes U,V in G
such that D(U,V)>2

02014

30013

32012

21101
4321W(U,V)

Redoing for c=2

15

YORK UNIVERSITY CSE4210

Example
• Redo, for c=2
• r(2)=0, r(1)=r(3)=r(4)=-1

⊗

⊕

⊕ ⊗D

D

2D

D

(1)

(1) (2)

(2)

