

YORK UNIVERSITY

Low Power

CSE4210

$$P = C_{total} V_o^2 f$$

$$T_{pd} = \frac{C_{charge} V_o}{k (V_o - V_t)^2}$$
 Simple approximation
for CMOS

 C_{total} is the total capacitance of the circuit, Vo is the supply voltage. C_{charge} is the capacitance to be charged/discharged in a single clock cycle.

Pipelining and parallel processing could be used to minimize power or execution time.

