Chapter 2
Iteration Bound

Discrete Real Time Systems

» A discrete real time system usually is a
continuously running program that receives
some input and produce an output.

* In many designs, data is processed in fixed size
chunks.

* The system should be fast enough to complete
processing a chunk before it acquires the next
one.

» Usually, an analog signal is captured, digitized
and then processed by a CPU, DSP of FPGA

Discrete Real Time Systems

* The system could be a single rate or multirate.

* In a single rate system, the number of samples
per second at the input and output of the system
Is the same.

* In a multi rate system, that number is different.

* For example in a digital front end of a receiver,
the samples go through multiple stages of
decimation decreasing the number of samples
per second in every stage. Transmitter if the
opposite

Representation of DSP Algorithms

Many ways to represent DSP algorithms
Kahn Process Network

Data flow graph

Signal flow graph

Dependence Graph

Kahn Process Network

 KPN is a set of concurrently running
autonomous processes.

» Processes communicate among
themselves in a point-to-point manner over
unbounded buffers.

» A process may read from a buffer, process
data, and write the result to another buffer.

» Reading is a blocking operation, writes are
non-blocking

Example of a LPN

é

[YORK UNIVERSITY CSE4210]
JPEG as KPN

source L [[[[[[[[}—+| RGB- beT

YChbCr

| Gommmon] I e 1T

Coding

[YORK UNIVERSITY CSE4210]
Limitations on KPN

* Reading is done from a FIFO, some DSP
algorithms requires non FIFO reading
(FFT).

» Once the data is read from the fifo, it is
gone, some applications require multiple
reading of the same data

 All values written in a FIFO will be read,
some algorithms may not read all the
values produced by a process.

Representation of DSP Algorithms

» Block Diagram
Y(n)=bx(n)+bx(n-1)+b,x(n-2)

N e I

P N> y(n)

Representation of DSP Algorithms

 Signal Flow Graph

X(n) Z_l Z-l

y(n)

e

Representation of DSP Algorithms
Data Flow Graph Sometimes represented
as a dot
X(n) YOI @ 1
M o
? \ OR'GENe
1
)
DFG Synchronous DFG

Representation of DSP Algorithms

* DFG

— Nodes represents computations (functions) and
directed edges represent data paths
(communication).

— Associated with every node its execution time (in
parenthesis),

— Edges have a non-negative delay

— Nodes can fire (perform the computations) if all input
data are available.

[VORKUNNERSTY Cera)
Representation of DSP Algorithms

» Imposes a constraints on the DFG.

« For example, the k' iteration of A must be
completed before the k+15t iteration of B
inter-iteration precedence.

« The k! iteration of B must be completed
before the k" iteration of A intra-iteration
precedence.

[VORK UNNERSITY — Cerap)
Representation of DSP Algorithms

* In synchronous DFG, the number of data
samples produced or consumed are specified
apriori.

» For example, node B needs 1 data unit to fire
and produces one data unit after completeion.

* In multi-rate systems, that number could be
greater than 1.

* By using node replication, a multi-rate system
could be changed to a single-rate system.

Synchronous DFG

A B C

N\ 1 -1 0 |e
A2 1e11 w 0 2 -2]e
5 2 0 -2 2 |&
€3

Topology Matrix: each column represent a
node, and each row represent an edge.

The entry is node i produces (+) a number of
tokens in edge j or consumes (-)

Synchronous DFG

» An SDFG is said to be consistent if the
nodes neither starve for data or require an
unbounded FIFQO’s on its edges.

* An inconsistent SDFG may suffer from
deadlock (starvation) or requires
unbounded FIFO’s

 An SDFG is consistent if the rank of its

topology graph =n-1, where n =number of
nodes.

Balanced Firing equation for SDFG

 If nodes S and D are directly connected

* Node S produces PS tokens and Node D
produces PD tokens.

* |If the firing rate of S and D is fs and fd

« Then fsPg =P where fg and fy are non
zero numbers

« Constructing this for every 2 connected
nodes, solving for non trivial solution. If
exists this is a consistent SDFG

SDFG

* We can use self-timed firing: As a node
gets the required number of tokens, it
fires.

* If mapped to H/W we can use self-timed
execution nodes.

» Also, we can calculate a repetition vector,
then we can use this vector to fire the
nodes.

[YORKUNIVERSITY CSE4210]
Example

OrOa07 0020
11 4 7

Solving for repetition vector gives us

[147 147 98 56 40 160]

The size of buffer we need?

What if self-timied firing?

[YORKUNIVERSITY CSE4210]
Dependence graph

* Dependence Graph is a directed graph
that shows the dependence on the
computations in an algorithm

* The nodes represent computations and
the edges represent precedence
constraints.

 The DFG nodes are executed repetitively,

while nodes in a dependence graph
contains computations for all iterations.

Dependence Graph

lteration bound

Iteration: execution of all computations in
the algorithm once.

Iteration period: the time required to
perform the iteration (sample period).
Feedback imposes an inherent bound on
the iteration period,

A characteristic of the representation of
the algorithm (DFG). Different

representations of the same algorithms
may lead to different iteration bounds.

11

lteration bound

» The feedback imposes an inherent
fundamental lower bound on the
achievable iteration period.

* Itis not possible to achieve iteration period
less than the iteration bound even if we
have an infinite processing power.

Ilteration Bound

» Edges describe a precedence constraints both
intra-iteration — and inter-iteration =

 Critical path is the path with the longest
computation time among all paths that contains
no delay.

» For recursive (contains loops) DFG, there is a
fundamental lower bound “iteration bound” T

* Loop bound: t/w,, t= loop computation time, w,is
the delay in the loop.

* The critical loop is the loop with the max. loop
bound.

* The loop bound of the critical loop is the iteration
bound

12

lteration Bound
y(n)

()

@
) @ @

* The edge from A to B enforces the intra iteration
precedence, the ki iteration of A must be done
before the k™" iteration of B. A, — By

* The edge from B to A enforces the inter iteration
precedence. The ki iteration of B must be executed
before the (k+1)™ iteration of A. By = Ay,

e Ay>By=>A ->B,=>A,—>B, ...

Critical Path
@1
D|d, (2) (4)
@ [pl4,

@2
Critical Path A->B 6 tu’s

e (&)

w(3)—(5)

6
Critical path 6->3->2->1=51tu
5->3->2->151tu’s

13

lteration bound

(2) @)

Precedence
Ay—>By,=A, -B,=>A,->B,=A; > B;
If 2D instead of D; loop bound =6/2=3

A,— By=|A, > B,|= A, = B,= |A; —> Bg
A, — B|=A; - B;|=|A; > B = |A;, > B,

lteration bound

t
T, = max{—'}
leL W|

D
@) g“5)

2D
T, = max(E,Ej =11
2 1

* |teration bound

14

Longest path Matrix Algorithm

“Iteration bound”
» A series of matrices are constructed LM,

m=1,2,..d, where d is the number of delays
in the DFG.

* The value of (mis the longest
computation tl@ﬂﬂ of all paths from delay
element d, to delay element d, that passes
through m-1 delay elements, If no such
path it is set to -1

Longest path Matrix Algorithm

“Iteration bound”
» High order matrices are computed

) = max(-1, 09+ E(m))
’ keK
/ \
[1,d] #-1

2(m)
T,= max {—
imefl2,.d} m

15

Longest path Matrix Algorithm
“Iteration bound”

@ ly(D)=2+1+1+1=5

-1 0 -1

-1 -1 0

@) 5 -1 -1 -1

4 -1 0 -1

@ 5 4 -1 0

5 5 -1 -1

-1 5 -1 -1

|i2,j=maX(—1,|i1,k+||1"j)|i]:k,|%,j¢—1
(S

4 -1 0 -1 =1 0. -1 -Yjjj-1//0 |-1 -1
LI e e S a0 1
5 5 -1 -1 -11-1 0
-1 5 -1 -1 -1 -1 -1

16

l

-1
-1 -1
-1 -1

4 -1 0
5 4 -10
|5 5
-1 5

-1
-1 -1 0
-1 -1 -1

-1 0 -1 -1
-1 4 -1 0
=max...
-1 5
-1 5

5 4 -1 0
8 5 4
9 5 5
9 -1 5

%

5

10 9 5
10 9 -1 5

|

“Iteration bound”
-1 -1
-1
-1
-1 0
-1 -1
-1 -1
max{

4

-1 -1 -1
5

-1 0
-1 -1 0
-1 0

-1 0
4
5
5
4
5
5
-1 5

|
|

Longest path Matrix Algorithm

I
[Te) _,4
[Te) _,4
© _,4
|~
on|m
o™
o™
<t _,2
<t _,2

T,

17

The min. Cycle Mean Algorithm

* The cycle mean M(c), of a cycle c, is the
average length of the edges in c. Calculated as
the sum of weights of all edges divided by the
number of edges in the cycle.

* The minimum cycle mean is the min of all c in
the graph.

* The maximum cycle mean is the max of all ¢

* The cycle means of a new graph G is used to
calculate the iteration bound.

The min. Cycle Mean Algorithm

» Construct a new graph G, from G (SFG).
* Anode in G, for each delay element in G

* w(i,j) in G4 is the longest path in G between
delay d; to d; that dos not pass through any delay
elements (zero-delay)

 If no such pass exist, the edge does not exist in
Gy (L@ in LPM).

* The maximum cycle mean in G is the iteration
bound.

18

» Construct the graph G_d from G, by negating
the values of the weights

« The maximum cycle mean of G, is simply the
minimum cycle mean of G; multiplied by -1

« Find the minimum cycle mean of G,
multiply it by -1

[YORKUNIVERSITY T CsE410]
The min. Cycle Mean Algorithm

» Choose any node arbitrarily and set
f(m>(j)=rineiln(f D) Gy + w(i, j)) - -

v_v(i, j)is the weight of theedgei — jin Gd, | isthset of)
nodes in G4 such that there exist an edge fromi — j f -

. ([@y 1M (i)B
T,=— min max Radl
ic{L,2,...d} me{ol,...d-1} d-m

d is the number of nodes in G4

8§ 8 8 o

19

()]

Example Fig 2.2

o0

tw_| 0@ _
o0
o0

tO@ =minif @)+ w2, 19 +wE@, 1©@) + w(@) =minfeo, o}

D)= mlin{f ©q) +\7v(1,2)}= 0-0=0

4 P0- mzi”{f ©)2) + W(2.3)}=0- 0

O () = min{f ©(3) + W3 4) =0~ 0= <o
1

£ =

£(4)

20

(d) iy £ (M)
To == min [max [f M- (I)n
iefL,2,...dH mefoL,...d—1} d-m

(o] 4] -5 -8

0

o0
o0 o0 O_ o0

- .
(o |l |0 f@_| 2| f@ o7 f@ |70
o0 00
o0

(-8-0)/4 (-8-)/3 (-8-4)/2 -8+5] [-
(-5-c0)/4 (-5-0)/3 (-5-»)/2 -5+4| |-1
(-4—o0)/4 (-4-w)/3 (-4-0)/2 —4-o0| |-
(0—0)/4 (0-0)/3 (0-00)/2 -0 0

T_=-min(-2,-1,-1, 00)=-(-2)=2

-4 4
. Example y

_4 8

_8 8

-6 ©®

[p] 4, G
[€H)]
<

21

fM(j)= miln(f M-D) () + w(i, j)) £ (0) :[0}
le 0

fD@) = min(f O @) +w), f Q@)+ v_v(2,1))= min(0—4,00—8) = —4
fD(2) = min(f O @) +w(2), 9 2) +v_v(2,2)): min(0 — 4,00 —8) = —4
@) = minlf V@) + w1, f D 2) +v_v(2,1))= min(-4 —4,~4—8) = -12
@) = minlf @) + w2, f D 2) +v_v(2,1))= min(—4 — 4,4 —8) = —12

(00 s |74 0 | 712
o | -4 =12

(D) iy _ ¢ (M)
Tw == min { max [f M- (I)n
icf1,2,...d} mefoL,...d—1} d-m

f(O)m, £ :[‘4} ¢ (0) :{‘12}

00 -4 -12
({(—12—0)/2 } {—12+4D {—6}

ax , =
(-12-0)/2 [|-12+4 -8

—min(-6,-8) =8

22

Multirate DFG

» Change the MRDFG into SRDFG

e Calculate the iteration bound of the
SRDFG, which is the same as the iteration
bound of the MRDFG

23

