
1

YORK UNIVERSITY

CSE4210
Multiplication

Mokhtar AboelazeCSE4210 Winter 2012

YORK UNIVERSITY

Multiplication

• The simplest way of doing multiplication is
repeated add and shift.

• Easy to understand, simple hardware, but
not very fast

2

YORK UNIVERSITY

AXMRAC

MR0
AX

Current partial
product

Cin
Cout n-bit

adder

S=sn-1 … s1 s0

Multiplicand AMultiplier
B

]11[

0

0

0
0

)()(
0 if0
1 if

−⋅⋅←⋅
∧+←⋅

⎩
⎨
⎧

=
=

=∧

nout

out

C
MRC

MR
MR

MR

MRSMRAC
AXACS

AX
AX

YORK UNIVERSITY

Multiplication

1 0 1 0

1 0 1 1

1 0 1 0
1 0 1 0

0 0 0 0
1 0 1 0

0 1 1 0 1 1 1 0

a

x

x0a
x1a
x2a
x3a

3

YORK UNIVERSITY

Multiplication

• Right shift

• Left shift

() pp and 0 with 22 (k))0(1)()1(==+= −+ paxpp k
j

jj

 pp and 0 with ax2 (k))0(
1-j-k

)()1(==+=+ ppp jj

Multiplication by 2k aligns the
number to the high order bits

YORK UNIVERSITY

a 1 0 1 0
x 1 0 1 1
===============
p(0) 0 0 0 0
+x0a 1 0 1 0

2p(1) 0 1 0 1 0
p(1) 0 1 0 1 0
+x1a 1 0 1 0

2p(2) 0 1 1 1 1 0
P(2) 0 1 1 1 1 0
+x2a 0 0 0 0

2p(3) 0 0 1 1 1 1 0
P(3) 0 0 1 1 1 1 0
+x3a 1 0 1 0

2p(4) 0 1 1 0 1 1 1 0
P(4) 0 1 1 0 1 1 1 0

a 1 0 1 0
x 1 0 1 1
===============
p(0) 0 0 0 0
2p(0) 0 0 0 0 0
+x3a 1 0 1 0

p(1) 0 1 0 1 0
2p(1) 0 1 0 1 0 0
+x2a 0 0 0 0

p(2) 0 1 0 1 0 0
2P(2) 0 1 0 1 0 0 0
+x1a 1 0 1 0

p(3) 0 1 1 0 0 1 0
2P(3) 0 1 1 0 0 1 0 0
+x0a 1 0 1 0

p(4) 0 1 1 0 1 1 1 0

4

YORK UNIVERSITY

Multiplication of Signed
Numbers

• Right shift the partial sum
• If the multiplier is positive (-ve multiplicand), then

the algorithm will work fine
– Each xja is a 2’s complement number and the sum

works correctly if we sign extended the partial sum
• If the multiplier is negative, then the negative-

weight interpretation of the sign bit can be
handled correctly if xk-1a is subtracted instead of
added

YORK UNIVERSITY

Example

1 0 1 1 0

1 0 1 0 1

1 0 1 1 0

0 1 0 1 1

5

YORK UNIVERSITY

More than one-bit at a time
• What we did so far is inspecting the multiplier bit

by bit and either adding the multiplicand or 0.
• We can do this by inspecting more than one bit

(digit) at a time.
• If we inspect 2 bits, then we can add 0, M, 2M,

or 3M at a time, and reduce the number of
additions by half.

• The problem is with the 3M (could be
represented as 2M+M.

YORK UNIVERSITY

Example

1 0 1 0

1 1 0 1

1 0 1 0

1 1 1 1 0

1 0 0 0 0 0 1 0

10
13

130

M

3M

Can use CSA for multi operand additions (See the
previous lecture)

6

YORK UNIVERSITY

Booth Encoding

• The basic idea is that a 1 can be
represented as 2-1.

• That eliminates a sequence of 1’s

0 0 1 1 1 1 1 1 0 0
1 -1

1 -1
1 -1

1 -1
1 -1

1 -1
0 1 0 0 0 0 0 -1 0 0

YORK UNIVERSITY

Booth encoding

• Starting from right to left, if we encounter a
sequence of 1’s The first 1 is replaced by
–1, the first 0 (after the sequence) is
replaced by 1.

• Sequence of 0’s means shift.
• Adding ±M (-M is the 1’s complement of M

with cin=1).
• The number of additions varies.

7

YORK UNIVERSITY

Modified Booth Encoding

• Can look at 3 bits with
overlap.

• Eliminates the need
to have 3M (only
M,2M).

• 2M is M with left shift.

i+1 i i-1 add

0 0 0 0*M
0 0 1 1*M
0 1 0 1*M
0 1 1 2*M
1 0 0 –2*M
1 0 1 –1*M
1 1 0 –1*M
1 1 1 0*M

YORK UNIVERSITY

Example

8

YORK UNIVERSITY

Example

YORK UNIVERSITY

FAFAFAFA

FAFAFAFA

FAFAFAFA

FAFAFAFA

FAFAFAFA

a4b0 a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a4b1

a3b3 a2b3 a1b3 a0b3

a3b4 a2b4 a1b4 a0b4

a4b2

a4b4

a4b3

a4b0 a3b0 a2b0 a1b0 a0b0

a4b1 a3b1 a2b1 a1b1 a0b1
a4b2 a3b2 a2b2 a1b2 a0b2

a4b3 a3b3 a2b3 a1b3 a0b3
a4b4 a3b4 a2b4 a1b4 a0b4

9

YORK UNIVERSITY

Implementing Large Multipliers
using Smaller ones

AH AL

XH XL

AL x XL

AL x XH

AH x XL

AH x XH AL x XL

AL x XH

AH x XL

AH x XH

