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Multiplication

• The simplest way of doing multiplication is 
repeated add and shift.

• Easy to understand, simple hardware, but 
not very fast
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Multiplication
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Multiplication

• Right shift

• Left shift

( )  pp    and      0     with  22 (k))0(1)()1( ==+= −+ paxpp k
j

jj

 pp    and      0     with  ax2 (k))0(
1-j-k

)()1( ==+=+ ppp jj

Multiplication by 2k aligns the 
number to the high order bits
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a 1  0  1  0
x 1  0  1  1
===============
p(0) 0  0  0  0
+x0a 1  0  1  0
----------------------
2p(1) 0 1  0  1  0
p(1) 0  1  0  1    0
+x1a 1  0  1  0
---------------------------
2p(2) 0 1  1  1  1      0
P(2) 0  1  1  1      1  0
+x2a 0  0  0  0
--------------------------------
2p(3) 0 0  1  1  1      1  0
P(3) 0  0  1  1      1  1  0
+x3a 1  0  1  0
-------------------------------------
2p(4) 0 1  1  0  1      1  1  0
P(4) 0  1  1  0      1  1  1  0

a 1  0  1  0
x 1  0  1  1
===============
p(0) 0  0  0  0
2p(0) 0   0  0  0  0
+x3a 1  0  1  0
----------------------------------
p(1) 0    1  0  1  0
2p(1) 0  1    0  1  0  0
+x2a 0  0  0  0
--------------------------------
p(2) 0  1    0  1  0  0
2P(2) 0  1  0    1  0  0  0
+x1a 1  0  1  0
----------------------------------
p(3) 0  1  1    0  0  1  0
2P(3) 0  1  1  0    0  1  0  0
+x0a 1  0  1  0
-------------------------------------
p(4) 0  1  1  0    1  1  1  0
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Multiplication of Signed 
Numbers

• Right shift the partial sum
• If the multiplier is positive (-ve multiplicand), then 

the algorithm will work fine
– Each xja is a 2’s complement number and the sum 

works correctly if we sign extended the partial sum
• If the multiplier is negative, then the negative-

weight interpretation of the sign bit can be 
handled correctly if xk-1a is subtracted instead of 
added
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Example

1  0  1  1  0

1  0  1  0  1

1  0  1  1  0

0  1  0  1  1
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More than one-bit at a time
• What we did so far is inspecting the multiplier bit 

by bit and either adding the multiplicand or 0.
• We can do this by inspecting more than one bit 

(digit) at a time.
• If we inspect 2 bits, then we can add 0, M, 2M, 

or 3M at a time, and reduce the number of 
additions by half.

• The problem is with the 3M (could be 
represented as 2M+M.
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Example

1   0   1   0

1   1   0   1

1   0   1   0

1   1   1   1   0

1   0   0   0   0   0   1   0

10
13

130

M

3M

Can use CSA for multi operand additions (See the 
previous lecture)
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Booth Encoding

• The basic idea is that a 1 can be 
represented as 2-1.

• That eliminates a sequence of 1’s

0   0   1 1 1 1 1 1 0   0   
1  -1

1 -1
1  -1

1 -1
1 -1

1   -1
0   1     0   0  0  0  0  -1  0 0 
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Booth encoding

• Starting from right to left, if we encounter a 
sequence of 1’s The first 1 is replaced by 
–1, the first 0 (after the sequence) is 
replaced by 1.

• Sequence of 0’s means shift.
• Adding ±M (-M is the 1’s complement of M 

with cin=1).
• The number of additions varies.
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Modified Booth Encoding

• Can look at 3 bits with 
overlap.

• Eliminates the need 
to have 3M (only 
M,2M).

• 2M is M with left shift.

i+1 i i-1 add

0 0 0 0*M
0 0 1 1*M
0 1 0 1*M
0 1 1 2*M
1 0 0 –2*M
1 0 1 –1*M
1 1 0 –1*M
1 1 1 0*M
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Example
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FAFAFAFA

FAFAFAFA

FAFAFAFA

FAFAFAFA

FAFAFAFA

a4b0 a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a4b1

a3b3 a2b3 a1b3 a0b3

a3b4 a2b4 a1b4 a0b4

a4b2

a4b4

a4b3

a4b0 a3b0 a2b0 a1b0 a0b0

a4b1 a3b1 a2b1 a1b1 a0b1
a4b2 a3b2 a2b2 a1b2 a0b2

a4b3 a3b3 a2b3 a1b3 a0b3
a4b4 a3b4 a2b4 a1b4 a0b4
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Implementing Large Multipliers 
using Smaller ones

AH AL

XH XL

AL x XL

AL x XH

AH x XL

AH x XH AL x XL

AL x XH

AH x XL

AH x XH


