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Overview 

• Propositional Logic 
– Resolution  
– Refutation 

• Predicate Logic 
– Substitution  
– Unification 
– Resolution 
– Refutation 
– Search space 

[ref.: Nilsson- Chap.3] 

[Prof. Zbigniew Stachniak’s class notes] 
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Theorems from Logic 

[from Mathematical Logic, George Tourlakis] 

• Modus Ponens 

• Cut Rule 

 
 

• Transitivity of  

• Proof by Contradiction 
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Resolution in Logic 

• By A. Robinson (1965) 

• Example: Prove  
 

 

• We need to show that the  

 following set is inconsistent: 
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Resolution in Logic Programming 

• Program P (facts and rules in clause form) 

• Goal G negated and added to program P 

• To prove G, we need to show                  is inconsistent 
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different sides of :- 

Complementary literals 
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Example (1) 

• Program P={q:-. , p:-q.} 

• Query :-p.  
– This is already the negated form of our goal! 
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q:-.  p:- q.  :-p. 

:-q. 

:- empty clause, inconsistency 

 therefore p is satisfiable  true 
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Refutation 

• When resolution is used to prove inconsistency, it is 
also called refutation. (refute=disprove) 

• The above binary tree, showing resolution and 
resulting in the empty clause, is called a refutation 
tree. 

• NOTE: To avoid potential mistakes, DO NOT RESOLVE 
UPON MORE THAN ONE LITERAL SIMULTANEOUSLY. 
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Example (2)  

A1. If Henry has two days off, then if the weather is bad, Henry is 
not fishing. 

A2. if Henry is not fishing and is not drinking in a pub with his 
friends, then he is watching TV at home. 

A3. If Henry is working, then he is neither drinking in a pub with 
his friends nor watching TV at home. 

 

Q. If Henry is not watching TV at home and he has two days off, 
then he is drinking in a pub with his friends provided that the 
weather is bad. 
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Example (2) (cont.) 

• From logical point of view, we want to prove Q, given 
A1, A2, A3.  

• By refutation principle, the consistency of  
 

 is examined. 

– Step 1: Represent as propositional formulas 
– Step 2: Represent as clauses 
– Step 3: Determine the consistency of C 

• If C is consistent, answer NO (false) 

• If C is inconsistent, answer YES (true) 
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Example (2) (cont.) 

A1. If Henry has two days off, then if the 
weather is bad, Henry is not fishing. 

A2. if Henry is not fishing and is not drinking 
in a pub with his friends, then he is 
watching TV at home. 

A3. If Henry is working, then he is neither 
drinking in a pub with his friends nor 
watching TV at home. 

 

Q. If Henry is not watching TV at home and 
he has two days off, then he is drinking in 
a pub with his friends provided that the 
weather is bad. 
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p: H has two days off 
q: weather is bad 
r: H is fishing 
s: H is drinking in a pub with 

his friends 
t: H is watching TV at home 
u: H is working 
 
A1. p ->(q ->~r) 
A2. (~r & ~s) -> t 
A3. u -> (~s & ~t) 
 
Q. (~t & p) -> (q->s) 
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Example (2) (cont.) 

• Conversion to clause form 
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Example (2) (cont.) 

• Determining the consistency of {C1, C2, ..., C8} 
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Example (2) (cont.) 

• C={C1, C2, ..., C8} is inconsistent (by resolution/ 
refutation) 

• Therefore Q is provable (deducible) 

• Answer: YES (true) 

 

• This is how Prolog answers Queries. If the empty 
string is deduced, Prolog answers YES (or TRUE). 
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Resolution in Predicate Logic 

• A literal in Predicate Logic (PL) is either 
– A positive literal in the form of p(t1, ..., tk) where p is a 

predicate and ti are terms 
– Or a negative literal in the form of  

• Two clauses in PL can be resolved upon two 
complementary unifiable literals 

• Two literals are unifiable if a substitution can make 
them identical. 

• Example: 
– study_hard(X)  and  study_hard(john) 
– date(D, M, 2001)    and     date(D1, may, Y1) 
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Substitution 

• Substitution: is a finite set of pairs of terms denoted 
as [X1/t1, ..., Xn/tn] where each ti is a term and each Xi 
is a variable. 

• Every variable is mapped 
 to a term; if not explicitly 
 mentioned, it maps to itself. 
 

• For example: 
– date(D, M, 2001)    and     date(D1, may, Y1) 
– Substitution: e= [D/D1,  M/may,  Y1/2001] 
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Applying substitution to clauses 

• Substitution of a clause is defined by applying 
substitution to each of its literals: 
e( p :- q1, ..., qk.) = e(p) :- e(q1), ..., e(qk). 

• Example: 
C:  pass_3401(X):- student(X, Y), study_hard(X). 
e=[X/ john, Y/ 3401] 
e(C)= pass_3401(john):- student(john, 3401), study_hard(john). 
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Applying substitution to literals 

• Example: 
 p(X,  f(X, 2, Z),  5) 
 e= [X/5  , Z/h(a,2+X)] 
 e(p(X,  f(X, 2, Z),  5))= p(5,  f(5, 2, h(a, 2+X)), 5) 

• Note:  
– Simultaneous substitution 
– X in h(a,2+X) is not substituted 

• Example: 
 r(X, Y) 
 e=[X/Y, Y/X] 
 e(r(X, Y))= r(Y, X) 
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• Example: 
 r(X,  f(2, Y)) 
 e=[f(2, Y) / Z] 
 illegal substitution- only 

variables can be substituted 
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Unifier 

• Let p1 and p2 be two literals and let e be a substitution. 
We call e a unifier of p1 and p2 if e(p1)=e(p2). 

• Two literals are unifiable if such a unifier exists. 

• Example: 
p1: date(D, M, 2001)    and    p2: date(D1, may, Y1) 
e=[D/15, D1/ 15, M/may,  Y1/2001] 
e(p1)= date(15, may, 2001) 
e(p2)= date(15, may, 2001)   e(p1)=e(p2) 

•  e is a unifier of p1 and p2  
• p1 and p2  are unifiable 
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Most General Unifier (mgu) 

• A unifier e is said to be a most general unifier (mgu) 
of two literals/terms iff e is more general than any 
other unifier of the terms. 

• Example: 
date(D, M, 2001)    and    date(D1, may, Y1) 
e1=[D/15, D1/ 15, M/may,  Y1/2001] : not the most general 
 
e2=[ D1/D, M/may, Y1/2001] 
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mgu 
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Unification 

• Called matching in Prolog 

• Rules for matching two terms, S and T [Bratko]:  

– If S and T are constants, then S and T match only if they are 
the same object. 

– If S is a variable (and T is anything), then they match and S 
is substituted by T (instantiated to T). Conversely, if T is a 
variable, then T is substituted by S. 

– If S and T are structures, then they match iff 
• S and T have the same principal functor 

• All their corresponding components match 
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Examples 

Are the following literals unifiable? What is their mgu? 
 

1. triangle(point(1,2),   X,     point(2,4) )  and  
  triangle(A,   point(5, Y),   point(2, B)) 
   unifiable: mgu=[A/point(1,2),   X/point(5,Y),   B/4] 
 
2. horizontal(point(1,X),  Y)  and vertical(Z, A) 
   not unifiable: horizontal ≠ vertical 
 
3. plus(2,2) and  4 
   not unifiable 
 
4. seg(point(1,2), point(3,4)) and seg(f(1,2), Y) 
  not unifiable: point ≠ f 
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Unification vs. Matching 

• Are p(X) and p(f(X)) unifiable? 
e=[X/f(X)]  
X=f(f(f(f(f(..... ?! 
 

• This is not allowed in unification. Proper unification requires 
occurs check: a variable X can not be substituted by a term t if 
X occur in t. 

 

• This is not done in Prolog’s matching for efficiency reasons.  
– Therefore it is referred to as ‘matching’ in Prolog, and not 

‘unification’. 
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The resolution rule 

• Given two clauses in the form: 
A0..Ai..Am:-B1...Bn. and C1...Ck :- D1..Dj..Dl. 

If e is a unifier of Ai and Dj (i.e. e(Ai)=e(Dj)) 

Then the resolvent of the above two clauses is: 

e(A0).. e(Ai-1)e(Ai+1).. e(Am) e(C1)..e(Ck) :- 

    e(B1).. e(Bn) e(D1).. e(Dj-1)e(Dj+1).. e(Dl).
 

• Example: 
C1:   p(Y):- r(X, Y), q(Y, Z). 
C2:   :- p(f(1)). 
Unifier of p(f(1)) and p(Y): e=[Y/f(1)] 
The resolvent of C1 and C2:      :- r(X, f(1)), q(f(1), Z). 
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Example 
[Nilsson] 

C0: proud(X) :-  parent(X, Y), newborn(Y). 
C1: parent(X, Y) :- father (X, Y). 
C2: parent(X, Y) :- mother(X, Y). 
C3: father(adam, mary). 
C4: newborn(mary). 

G0: :- proud(Z). 
 
Unifier of proud(..) in C0 and G0: e=[X/Z], resolvent: 
G1: :- parent(Z,Y), newborn(Y). 
Unifier of parent(..) in C1 and G1: e=[X/Z, Y/Y], resolvent: 
G2: :- father(Z,Y), newborn(Y). 
To prevent mistakes, we rename the variables whenever we 
use a fresh copy of a clause. 
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Example (cont.) 
[Nilsson] 

      G0:   :- proud(Z). 
(copy of) C0: proud(X1) :-  parent(X1, Y1), newborn(Y1). 
Resolve with G0: e=[X1/Z] 
   G1:   :- parent(Z,Y1), newborn(Y1). 
(copy of) C1: parent(X2,Y2) :- father (X2, Y2). 
Resolve with G1: e=[X2/Z, Y2/Y1] 
      G2:  :- father(Z, Y1), newborn(Y1). 
(copy of) C3: father(adam, mary). 
Resolve with G2: e=[Z/adam, Y1/mary] 
      G3: :-newborn(mary). 
(copy of) C4: newborn(mary). 
Resolve with G3: e=[] 
      G4:  :- 
 
Empty clause  answer to query: true if Z=adam 
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Example (cont.) 
[Nilsson] 
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1                               1    1                             1 

2     2                              2    2 

Refutation Tree for G0 

Just a different notation for :- 

1                             1 

1                             1 
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Linear Refutation 

• We can resolve with different clauses and keep 
adding new clauses forever! 

• To prevent this, Linear Refutation always starts with a 
goal (as the example showed previously). 

• Prolog’s computation rule:  
Always selects the leftmost subgoal, although logically there 
is no order for the subgoals. 

Example: When resolving G1:   :- parent(Z,Y1), newborn(Y1)., 
parent(..) was selected to resolve upon.  

Prolog also starts from the top of knowledge base and goes 
down the list of facts and rules. 
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Search Space 

• Based on linear refutation and Prolog’s computation rule,  
we know the search tree of Prolog. 

• Search tree:  
The root in the search tree is the main goal G0. A child node 
is a new goal Gi obtained through resolution. A link is labelled 
with the clause resolved with and the substitution. 

• Example: 
C0:  grandfather(X,Z) :- father(X,Y), parent(Y,Z). 
C1:   parent(X,Y) :- father(X,Y). 
C2:  parent(X,Y) :- mother(X,Y). 
C3:   father(a,b):-. 
C4:  mother(b,c):-. 
C5:  mother(b,d):-. 
G0:  :- grandfather(a,X). 
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Search Space (example) 
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C0: grandfather(X,Z) :-  
   father(X,Y), parent(Y,Z). 
C1:  parent(X,Y) :- father(X,Y). 
C2: parent(X,Y) :- mother(X,Y). 
C3:  father(a,b):-. 
C4: mother(b,c):-. 
C5: mother(b,d):-. 
G0: :- grandfather(a,X). 

C0, [Z/X, X0/a] 

C3, [Y0/b] 

C1, [X1/b, Y1/X] 

Nothing to 
resolve with, 
backtrack! 

C2, [X2/b, Y2/X] 

C4, [X/c] 

TRUE, X=c 
; (backtrack!) 

C5, [X/d] 

TRUE, X=d 

0 
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Search Space 

• What is the search strategy used by Prolog for 
searching the tree? 
     Depth First Search        or  Breadth First Search 
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Prolog uses DFS 
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Questions 

1. Why is it ok to rename the variables every time we 
use a fresh copy of a clause (slide #24)? Doesn’t 
that change the clause?! 

Note that each variable X in our clause is actually bound by a universal 

quantifier (X). In the last step of converting to CNF, we removed the 

quantifiers for simpler notation. Renaming the variable bound by a 

quantifier (dummy renaming) does not alter the semantics of the 

formula. 
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Questions 

2. Why do we always have goals in each node of 
Prolog’s search tree? Why don’t we have facts and 
rules as resolvents?! 

Each goal is a clause with no head and several literals in the body. On the 

other hand, each clause in the knowledge base is a fact or a rule, having 

exactly one literal in the head and zero or more literals in the body. Based on 

linear refutation, Prolog always resolves the goal with its set of facts and 

rules. The one literal in the head of the facts and rules, is always cut 

(resloved) with a subgoal, leaving no literals in the head. Therefore after 

each resolution step, the resolvent is always a goal. 
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Examples for resolution rule 
(Slide #23) 

• Example 1: Consider two clauses: 
student(john, 3401):-.  
:- student(john, 3401). 
 
We can resolve these two clauses upon the literal 

“student(john,3401)”, since:  

1. It is unifiable in both clauses after no substitution (e=[]). 

2. It apears on the right side (of :- ) in one clause and on the 
left side in the other clause. 

The resolvent (cutting the literal in both clauses, and writing 
what is left from both clauses) is therefore: 

:-  (the empty clause) 
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Examples for resolution rule 
(Slide #23) 

• Example 2: Consider two clauses: 
student(john, 3401):-.  
:- student(X, 3401). 
 
We can resolve these two clauses upon the literals 

“student(john,3401)” and “student(X,3401)”, since:   

1. These literals are unifiable after substitution e=[X/john]. 
 e(student(john,3401))= e(student(X,3401)) 

2. One apears on the right side (of :- ) in one clause and the 
other on the left side in the other clause. 

The resolvent (cutting the literal in both clauses, and writing 
what is left from both clauses) is therefore: 

:-  (the empty clause) 
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Examples for resolution rule 
(Slide #23) 

• Example 3: Consider two clauses: 
pass(X):- student(X, 3401), study (X).  
:- pass(john). 

We can resolve these two clauses upon the literals  
 “pass(john)” and “pass(X)”, since:   

1. These literals are unifiable after substitution e=[X/john]. 
 e(pass(john))= e(pass(X)) 

2. One apears on the right side (of :- ) in one clause and the other 
on the left side in the other clause. 

The resolvent (cutting the literal in both clauses, and writing what 
is left from both clauses) is therefore: 

:-  e(student(X,3401)), e(study(X)).    

After applying the substitution, it will simplify to: 
:- student(john, 3401), study(john). 
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