
Resolution and Refutation

York University

Department of Computer Science and Engineering

York University- CSE 3401- V. Movahedi 1 04_Resolution

Overview

• Propositional Logic
– Resolution
– Refutation

• Predicate Logic
– Substitution
– Unification
– Resolution
– Refutation
– Search space

[ref.: Nilsson- Chap.3]

[Prof. Zbigniew Stachniak’s class notes]

York University- CSE 3401 2 04_Resolution

Theorems from Logic

[from Mathematical Logic, George Tourlakis]

• Modus Ponens

• Cut Rule

• Transitivity of 

• Proof by Contradiction

York University- CSE 3401 3 04_Resolution

Resolution in Logic

• By A. Robinson (1965)

• Example: Prove

• We need to show that the

 following set is inconsistent:

York University- CSE 3401 4 04_Resolution

Resolution in Logic Programming

• Program P (facts and rules in clause form)

• Goal G negated and added to program P

• To prove G, we need to show is inconsistent

York University- CSE 3401 5

}{ GP 

q; t :- p. , p:- s. Parent clauses

 q; t :- s. Resolvent

Resolving upon p, being on
different sides of :-

Complementary literals

04_Resolution

Example (1)

• Program P={q:-. , p:-q.}

• Query :-p.
– This is already the negated form of our goal!

York University- CSE 3401 6

q:-. p:- q. :-p.

:-q.

:- empty clause, inconsistency

 therefore p is satisfiable  true

04_Resolution

Refutation

• When resolution is used to prove inconsistency, it is
also called refutation. (refute=disprove)

• The above binary tree, showing resolution and
resulting in the empty clause, is called a refutation
tree.

• NOTE: To avoid potential mistakes, DO NOT RESOLVE
UPON MORE THAN ONE LITERAL SIMULTANEOUSLY.

York University- CSE 3401 7 04_Resolution

Example (2)

A1. If Henry has two days off, then if the weather is bad, Henry is
not fishing.

A2. if Henry is not fishing and is not drinking in a pub with his
friends, then he is watching TV at home.

A3. If Henry is working, then he is neither drinking in a pub with
his friends nor watching TV at home.

Q. If Henry is not watching TV at home and he has two days off,
then he is drinking in a pub with his friends provided that the
weather is bad.

York University- CSE 3401 8 04_Resolution

Example (2) (cont.)

• From logical point of view, we want to prove Q, given
A1, A2, A3.

• By refutation principle, the consistency of

 is examined.

– Step 1: Represent as propositional formulas
– Step 2: Represent as clauses
– Step 3: Determine the consistency of C

• If C is consistent, answer NO (false)

• If C is inconsistent, answer YES (true)

York University- CSE 3401 9

}{}3,2,1{ QAAA   C

.}3,2,1{ QAAA

04_Resolution

Example (2) (cont.)

A1. If Henry has two days off, then if the
weather is bad, Henry is not fishing.

A2. if Henry is not fishing and is not drinking
in a pub with his friends, then he is
watching TV at home.

A3. If Henry is working, then he is neither
drinking in a pub with his friends nor
watching TV at home.

Q. If Henry is not watching TV at home and
he has two days off, then he is drinking in
a pub with his friends provided that the
weather is bad.

York University- CSE 3401 10

p: H has two days off
q: weather is bad
r: H is fishing
s: H is drinking in a pub with

his friends
t: H is watching TV at home
u: H is working

A1. p ->(q ->~r)
A2. (~r & ~s) -> t
A3. u -> (~s & ~t)

Q. (~t & p) -> (q->s)

04_Resolution

Example (2) (cont.)

• Conversion to clause form

York University- CSE 3401 11

 









































.: is

.:q is

.:p is

.: is

)()()()(:

.,: is

.,: is

)()()()(:3

.:;; is)()(:2

.,,: is)(:1

8

7

6

5

4

3

2

1

sC

C

C

tC

sqptsqptsqptQ

tuC

suC

tusutsutsuA

tsrCtsrtsrtsrA

rqpCrqprqpA

04_Resolution

Example (2) (cont.)

• Determining the consistency of {C1, C2, ..., C8}

York University- CSE 3401 12

.: .:q .:p .: .,: .,: .:;; .,,:

 C C C C
87654321

sttusutsrrqp

CCCC



-.:sr; .,: rq

-.:r .: r

.: 

04_Resolution

Example (2) (cont.)

• C={C1, C2, ..., C8} is inconsistent (by resolution/
refutation)

• Therefore Q is provable (deducible)

• Answer: YES (true)

• This is how Prolog answers Queries. If the empty
string is deduced, Prolog answers YES (or TRUE).

York University- CSE 3401 13 04_Resolution

Resolution in Predicate Logic

• A literal in Predicate Logic (PL) is either
– A positive literal in the form of p(t1, ..., tk) where p is a

predicate and ti are terms
– Or a negative literal in the form of

• Two clauses in PL can be resolved upon two
complementary unifiable literals

• Two literals are unifiable if a substitution can make
them identical.

• Example:
– study_hard(X) and study_hard(john)
– date(D, M, 2001) and date(D1, may, Y1)

York University- CSE 3401 14

),...,(
1 k

ttp

),...,(
1 k

ttp

04_Resolution

Substitution

• Substitution: is a finite set of pairs of terms denoted
as [X1/t1, ..., Xn/tn] where each ti is a term and each Xi
is a variable.

• Every variable is mapped
 to a term; if not explicitly
 mentioned, it maps to itself.

• For example:
– date(D, M, 2001) and date(D1, may, Y1)
– Substitution: e= [D/D1, M/may, Y1/2001]

York University- CSE 3401 15 04_Resolution

Applying substitution to clauses

• Substitution of a clause is defined by applying
substitution to each of its literals:
e(p :- q1, ..., qk.) = e(p) :- e(q1), ..., e(qk).

• Example:
C: pass_3401(X):- student(X, Y), study_hard(X).
e=[X/ john, Y/ 3401]
e(C)= pass_3401(john):- student(john, 3401), study_hard(john).

York University- CSE 3401 16 04_Resolution

Applying substitution to literals

• Example:
 p(X, f(X, 2, Z), 5)
 e= [X/5 , Z/h(a,2+X)]
 e(p(X, f(X, 2, Z), 5))= p(5, f(5, 2, h(a, 2+X)), 5)

• Note:
– Simultaneous substitution
– X in h(a,2+X) is not substituted

• Example:
 r(X, Y)
 e=[X/Y, Y/X]
 e(r(X, Y))= r(Y, X)

York University- CSE 3401 17

• Example:
 r(X, f(2, Y))
 e=[f(2, Y) / Z]
 illegal substitution- only

variables can be substituted
 04_Resolution

Unifier

• Let p1 and p2 be two literals and let e be a substitution.
We call e a unifier of p1 and p2 if e(p1)=e(p2).

• Two literals are unifiable if such a unifier exists.

• Example:
p1: date(D, M, 2001) and p2: date(D1, may, Y1)
e=[D/15, D1/ 15, M/may, Y1/2001]
e(p1)= date(15, may, 2001)
e(p2)= date(15, may, 2001)  e(p1)=e(p2)

• e is a unifier of p1 and p2
• p1 and p2 are unifiable

York University- CSE 3401 18 04_Resolution

Most General Unifier (mgu)

• A unifier e is said to be a most general unifier (mgu)
of two literals/terms iff e is more general than any
other unifier of the terms.

• Example:
date(D, M, 2001) and date(D1, may, Y1)
e1=[D/15, D1/ 15, M/may, Y1/2001] : not the most general

e2=[D1/D, M/may, Y1/2001]

York University- CSE 3401 19

mgu

04_Resolution

Unification

• Called matching in Prolog

• Rules for matching two terms, S and T [Bratko]:

– If S and T are constants, then S and T match only if they are
the same object.

– If S is a variable (and T is anything), then they match and S
is substituted by T (instantiated to T). Conversely, if T is a
variable, then T is substituted by S.

– If S and T are structures, then they match iff
• S and T have the same principal functor

• All their corresponding components match

York University- CSE 3401 20 04_Resolution

Examples

Are the following literals unifiable? What is their mgu?

1. triangle(point(1,2), X, point(2,4)) and
 triangle(A, point(5, Y), point(2, B))
 unifiable: mgu=[A/point(1,2), X/point(5,Y), B/4]

2. horizontal(point(1,X), Y) and vertical(Z, A)
 not unifiable: horizontal ≠ vertical

3. plus(2,2) and 4
 not unifiable

4. seg(point(1,2), point(3,4)) and seg(f(1,2), Y)
 not unifiable: point ≠ f

York University- CSE 3401 21 04_Resolution

Unification vs. Matching

• Are p(X) and p(f(X)) unifiable?
e=[X/f(X)]
X=f(f(f(f(f(..... ?!

• This is not allowed in unification. Proper unification requires
occurs check: a variable X can not be substituted by a term t if
X occur in t.

• This is not done in Prolog’s matching for efficiency reasons.
– Therefore it is referred to as ‘matching’ in Prolog, and not

‘unification’.

York University- CSE 3401 22 04_Resolution

The resolution rule

• Given two clauses in the form:
A0..Ai..Am:-B1...Bn. and C1...Ck :- D1..Dj..Dl.

If e is a unifier of Ai and Dj (i.e. e(Ai)=e(Dj))

Then the resolvent of the above two clauses is:

e(A0).. e(Ai-1)e(Ai+1).. e(Am) e(C1)..e(Ck) :-

 e(B1).. e(Bn) e(D1).. e(Dj-1)e(Dj+1).. e(Dl).

• Example:
C1: p(Y):- r(X, Y), q(Y, Z).
C2: :- p(f(1)).
Unifier of p(f(1)) and p(Y): e=[Y/f(1)]
The resolvent of C1 and C2: :- r(X, f(1)), q(f(1), Z).

York University- CSE 3401 23 04_Resolution

Example
[Nilsson]

C0: proud(X) :- parent(X, Y), newborn(Y).
C1: parent(X, Y) :- father (X, Y).
C2: parent(X, Y) :- mother(X, Y).
C3: father(adam, mary).
C4: newborn(mary).

G0: :- proud(Z).

Unifier of proud(..) in C0 and G0: e=[X/Z], resolvent:
G1: :- parent(Z,Y), newborn(Y).
Unifier of parent(..) in C1 and G1: e=[X/Z, Y/Y], resolvent:
G2: :- father(Z,Y), newborn(Y).
To prevent mistakes, we rename the variables whenever we
use a fresh copy of a clause.

York University- CSE 3401 24 04_Resolution

Example (cont.)
[Nilsson]

 G0: :- proud(Z).
(copy of) C0: proud(X1) :- parent(X1, Y1), newborn(Y1).
Resolve with G0: e=[X1/Z]
 G1: :- parent(Z,Y1), newborn(Y1).
(copy of) C1: parent(X2,Y2) :- father (X2, Y2).
Resolve with G1: e=[X2/Z, Y2/Y1]
 G2: :- father(Z, Y1), newborn(Y1).
(copy of) C3: father(adam, mary).
Resolve with G2: e=[Z/adam, Y1/mary]
 G3: :-newborn(mary).
(copy of) C4: newborn(mary).
Resolve with G3: e=[]
 G4: :-

Empty clause  answer to query: true if Z=adam

York University- CSE 3401 25 04_Resolution

Example (cont.)
[Nilsson]

York University- CSE 3401 26

1 1 1 1

2 2 2 2

Refutation Tree for G0

Just a different notation for :-

1 1

1 1

04_Resolution

Linear Refutation

• We can resolve with different clauses and keep
adding new clauses forever!

• To prevent this, Linear Refutation always starts with a
goal (as the example showed previously).

• Prolog’s computation rule:
Always selects the leftmost subgoal, although logically there
is no order for the subgoals.

Example: When resolving G1: :- parent(Z,Y1), newborn(Y1).,
parent(..) was selected to resolve upon.

Prolog also starts from the top of knowledge base and goes
down the list of facts and rules.

York University- CSE 3401 27 04_Resolution

Search Space

• Based on linear refutation and Prolog’s computation rule,
we know the search tree of Prolog.

• Search tree:
The root in the search tree is the main goal G0. A child node
is a new goal Gi obtained through resolution. A link is labelled
with the clause resolved with and the substitution.

• Example:
C0: grandfather(X,Z) :- father(X,Y), parent(Y,Z).
C1: parent(X,Y) :- father(X,Y).
C2: parent(X,Y) :- mother(X,Y).
C3: father(a,b):-.
C4: mother(b,c):-.
C5: mother(b,d):-.
G0: :- grandfather(a,X).

York University- CSE 3401 28 04_Resolution

Search Space (example)

York University- CSE 3401 29

C0: grandfather(X,Z) :-
 father(X,Y), parent(Y,Z).
C1: parent(X,Y) :- father(X,Y).
C2: parent(X,Y) :- mother(X,Y).
C3: father(a,b):-.
C4: mother(b,c):-.
C5: mother(b,d):-.
G0: :- grandfather(a,X).

C0, [Z/X, X0/a]

C3, [Y0/b]

C1, [X1/b, Y1/X]

Nothing to
resolve with,
backtrack!

C2, [X2/b, Y2/X]

C4, [X/c]

TRUE, X=c
; (backtrack!)

C5, [X/d]

TRUE, X=d

0

04_Resolution

Search Space

• What is the search strategy used by Prolog for
searching the tree?
 Depth First Search or Breadth First Search

York University- CSE 3401 30

Prolog uses DFS

04_Resolution

Questions

1. Why is it ok to rename the variables every time we
use a fresh copy of a clause (slide #24)? Doesn’t
that change the clause?!

Note that each variable X in our clause is actually bound by a universal

quantifier (X). In the last step of converting to CNF, we removed the

quantifiers for simpler notation. Renaming the variable bound by a

quantifier (dummy renaming) does not alter the semantics of the

formula.

York University- CSE 3401 04_Resolution 31

Questions

2. Why do we always have goals in each node of
Prolog’s search tree? Why don’t we have facts and
rules as resolvents?!

Each goal is a clause with no head and several literals in the body. On the

other hand, each clause in the knowledge base is a fact or a rule, having

exactly one literal in the head and zero or more literals in the body. Based on

linear refutation, Prolog always resolves the goal with its set of facts and

rules. The one literal in the head of the facts and rules, is always cut

(resloved) with a subgoal, leaving no literals in the head. Therefore after

each resolution step, the resolvent is always a goal.

York University- CSE 3401 04_Resolution 32

Examples for resolution rule
(Slide #23)

• Example 1: Consider two clauses:
student(john, 3401):-.
:- student(john, 3401).

We can resolve these two clauses upon the literal

“student(john,3401)”, since:

1. It is unifiable in both clauses after no substitution (e=[]).

2. It apears on the right side (of :-) in one clause and on the
left side in the other clause.

The resolvent (cutting the literal in both clauses, and writing
what is left from both clauses) is therefore:

:- (the empty clause)

York University- CSE 3401 04_Resolution 33

Examples for resolution rule
(Slide #23)

• Example 2: Consider two clauses:
student(john, 3401):-.
:- student(X, 3401).

We can resolve these two clauses upon the literals

“student(john,3401)” and “student(X,3401)”, since:

1. These literals are unifiable after substitution e=[X/john].
 e(student(john,3401))= e(student(X,3401))

2. One apears on the right side (of :-) in one clause and the
other on the left side in the other clause.

The resolvent (cutting the literal in both clauses, and writing
what is left from both clauses) is therefore:

:- (the empty clause)

York University- CSE 3401 04_Resolution 34

Examples for resolution rule
(Slide #23)

• Example 3: Consider two clauses:
pass(X):- student(X, 3401), study (X).
:- pass(john).

We can resolve these two clauses upon the literals
 “pass(john)” and “pass(X)”, since:

1. These literals are unifiable after substitution e=[X/john].
 e(pass(john))= e(pass(X))

2. One apears on the right side (of :-) in one clause and the other
on the left side in the other clause.

The resolvent (cutting the literal in both clauses, and writing what
is left from both clauses) is therefore:

:- e(student(X,3401)), e(study(X)).

After applying the substitution, it will simplify to:
:- student(john, 3401), study(john).

York University- CSE 3401 04_Resolution 35

