Motorola HC12

Assembler

Product Date

HC12 Assembler 8/5/03

Table of Contents 3

Table Of Contents

Assembler. ... 15
Highlights. o e e 15
Structure of thisDocument i 15

Usingthe Assembler........ i 17
Assembler Environment. e 17
ProjeCt DIrECIONY. . o vttt e e e 17
0 o 17
Writing your Assembly SourceFile. i i 17
Assemblingyour Source File. 18
Linking Your Application 21
Directly Generatingan ABSFile........... i, 23
Assembler sourcefile. o 23
Assembling and generating the application 24
Assembler Graphical User Interface. 27
Startingthe Assembler. 27
Assembler MainWindow i 28
Window Title. ... o 28
oMt ATa . ottt 29
TOOl Bar. ..o 30
SAUS Barot e 31
Assembler MenuBar 31
FileMenu. 32
AsSEMbBIEr MENU. . ..o 33
VIBW MEBNU. . o 33
Editor SettingsDialog BOXttt e 34
Global Editor (Shared by al Toolsand Projects).t 35
Loca Editor (Sharedby @l TOOIS) oo v 36
Editor started with Command Line. i 37
Editor started With DDE 38
CodeWarrior With COM e e e 39
MO NS, . o 39
Save Configuration Dialog BOX. ov oo 40
Option SettingsSDIialog BOX . . .« .o v et 43
Message Settings Dialog BOX 44
Changing the Class associated withaMessage, 45
ADOUL BOX .« oot 46
SpecifyingthelnputFile i 46
Usethe Command Lineinthe Tool Barto Assemble 47
UsetheEntry File|Assemble.. 47

© Copyright 1987-2003 Metrowerks

4 Table of Contents

UseDragand Drop.ottt 47
Message/Error Feedback. a7
Use Information from the Assembler Window 48
UseaUser Defined EAItoro e 48
Environment 51
The Current DIreCtory.o e e e 52
Environment Macros. oo oot 52
Global Initialization File (MCUTOOLS.INI) (PConly) 53
[Installation] SECIONttt 54
[OptioNS] SECHON oottt 54
[XXX_Assembler] Sectionot 54
[EdItor] SECHioN 56
EXample . .. 57
Local Configuration File (usualy project.ini) 57
[EdItor] SECtiont 58
[XXX_Assembler] Sectiono 59
EXamMPle . . 63

e 11 63
LineContinuation ot 64
Environment VariableDetails. i 65
ABSPATH: AbsolutefilePath. 66
ASMOPTIONS: Default Assembler Options. 67
COPYRIGHT: Copyright Entry inObjectFile 68
DEFAULTDIR: Default Current Directory 69
ENVIRONMENT: Environment File Specification.................... 70
ERRORFILE: Error File Name Specification 71
GENPATH: Search Pathfor InputFile 73
INCLUDETIME: Creation TimeinObjectFile....................... 74
OBJPATH: Object FilePath. 75
SRECORD: SReCOrd TYPE . o\ ittt i e ettt 76
TEXTPATH: TextFilePath. 77
TMP: Temporary dir€Ctoryot 78
USERNAME: User NameinObjectFile............................ 79
FileS. . o 8l
INPUE FILES . . o 81
SOUNCE FIIES . o o 81
Include File. . ..o 81
OULPUL FILES. . . e 81
OB ECt FIlES . .ot e 81
AbSOIUE FIIES. . . oo 81
MOtOrolaS FIleS. 82
ListiNg FileS . . oot 82

© Copyright 1987-2003 Metrowerks

Table of Contents 5

Debug Listing Files.t 82
Error Listing File o e 83
Assembler Optionst 85
Assembler OptionDetailst 86
Using Special Modifiers. 87
Listof @l Options. oo e 89
-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON 91
-Ci: Switch Case Sensitivity on Label NamesOFF. 92
-CMacAngBrack: Angle brackets for Macro Arguments Grouping 93
-CMacBrackets: Square brackets for Macro Arguments Grouping. 94
-Compat: Compatibility Modes.o 95
SCPU: DENVALIVE . oo 98
-D:DefineLabel 99
-Env: Set Environment Variable i 101
-FOutput FileFormat.o 102
SH:ShortHelp . oo 103
-liIncludeFilePath 104
-L: GeneratealistingFile. i 105
-Lasmc: ConfigureListingFile o i 107
-Lc: NoMecro Call inListingFile i 109
-Ld: No Macro Definitionin ListingFile 111
-Le: No Macro Expansionin ListingFile 113
-Li: Noincluded Filein ListingFile i i, 115
-Lic: LicenseInformationoiiii i 117
-LicA: License Information about every Featurein Directory 118
-M:Memory Model 119
-MacroNest: Configure Maximum MacroNesting 120
-MCUasm: Switch Compatibility withMCUasmON................. 121
-N: Display NOtify BOXo e 122
-NoBeep: NoBeepinCaseof anError ..., 123
-NoDebuglnfo: No Debug Information for ELF/Dwarf Files........... 124
-NoEnv: Donot use Environment 125
-ObjN: Object File Name Specification., 126
-Prod: Specify Project Fileat Startup. 127
-Struct: Support for Structured Typeso oo 128
-V: Printsthe Assembler Version 129
-View: Application Standard Occurrence, 130
-WZ1: NoInformation Messages.o vvi i e 131
-W2: No Information and Warning Messages.o.... 132
-WErrFile: Create"err.log" ErrorFile. oo, 133

© Copyright 1987-2003 Metrowerks

6 Table of Contents

-Wmsg8x3: Cut File Names in Microsoft Formatto 8.3 134
-WmsgCE: RGB color for errormessagescoovviiieiiineenn. 135
-WmsgCF: RGB color for fatal messages 136
-WmsgCl: RGB color for informationmessages. 137
-WmsgCU: RGB color for user messagescoovonnnn... 138
-WmsgCW: RGB color for warningmessages.coocovevvnn... 139
-WmsgFb: Set Message File Format for BatchMode 140
-WmsgFi: Set Message File Format for InteractiveMode. 142
-WmsgFob: Message Format for BatchMode 144
-WmsgFoi: Message Format for InteractiveMode. 146
-WmsgFonf: Message Format for no File Information. 148
-WmsgFonp: Message Format for no Position Information. 149
-WmsgNe: Number of Error Messages.o vi i e 151
-WmsgNi: Number of Information Messages. 152
-WmsgNu: DisableUser Messageso 153
-WmsgNw: Number of WarningMessagescoovvvinnn. 154
-WmsgSd: Setting aMessagetoDisable 155
-WmsgSe: SettingaMessageto Error 156
-WmsgSi: Setting a Messageto Information 157
-WmsgSw: SettingaMessagetoWarning.o, 158
-WOutFile: Create Error ListingFile.............................. 159
-WStdout: Writeto Standard Output, 160
SECliONS . . et e 161
Section Attribute. 161
€008 SECLIONS. . . .\ et ettt e e 161
CoNStant SECHIONS. oottt ettt e e 161
Dala SECONS . . o oottt 162
SECH ON TY P . . ettt e e 162
ADBSOIULE SECHIONS. oottt 162
Relocatable Sections 164
Relocatable vs. Absolute Section. 167
Assembler Syntax e 169
Comment Linet 169
SOUMCE LINE. . ot 169
Label Fleld . ..o 169
Operation Field. 170
Operand Field: AddressingModes.o 178
Comment Feld. 189
SYMDBOIS. . 190
User Defined Symbols.o 190
External Symbols. 190

© Copyright 1987-2003 Metrowerks

Table of Contents 7

Undefined Symbolso 191
Reserved Symbols 191
CONSIANES . . .o 191
Integer CONSEANESot e 191
SHNG CONSEANES ot e 192
Floating-Point CoNStantsttt 192
P A0S . v vttt e 192
Addition and Subtraction Operators (binary), 192
Multiplication, Division and Modulo Operators (binary). 193
SigN OPErators (UNGIY) v v ettt e et ettt e e e e e 193
Shift Operators (Dinary)t 194
Bitwise Operators (DiNary)coo vt 194
Bitwise Operators (UNAIY).o et 195
Logical Operators (UNAIY). . . oo ettt et et e e ettt e et 195
Relational Operators (Dinary) 195
HIGH OpErator oot e e e e e e e e e 196
LOW OPEIaION . . ettt et e e e et e e et e e e et e e e e e 197
PAGE O IaOr. . . oo v et ettt e 197
FOrce Operator (UNarY)ottt e e e et e e et e 198
Operator PreCedenCe.t 198
EXPIrESSION .o e 199
ADSOIULE EXPrESSION. . . oot 200
Simple Relocatable EXPressiont 201
Unary Operation ResUltot e 201
Binary OperationsResUlto 201
Trangdation Limitso 202
Assembler DIreCtiVESot 203
DireCtive OVEIVIBW et e e 203
Section Definition DIreCHiVES oottt 203
Constant Definition DIreCtiVES.ot 203
Data Allocation DIFeCtVESo oot e e 203
Symbol Linkage DIreCtiveso 204
Assembly Control DIreCtiVESttt 204
Listing File Control DIreCtiVES.v vttt 205
ABSENTRY - Application Entry Point. 207
ALIGN - Align Location Counteroouuineiin e, 208
BASE - Set NUMber Baseo oo 209
CLIST - List Conditional Assemblyccciiiiiiinn... 210
DC-DefineConstant. it 212
DCB - DefineConstant Blocko oo 214
DS-DefineSpace . ..ot 216
ELSE - Conditional Assembly. i 218
END-EndAssembly. 220
ENDFOR - End of FORblocK. 221

© Copyright 1987-2003 Metrowerks

8 Table of Contents

ENDIF - End Conditional Assembly 222
ENDM - End Macro Definition i 223
EQU - EquateSymbol Value 224
EVEN - ForceWord Alignment. 225
FAIL - Generate Error Messageo oo 226
FOR - Repeat assembly block. i 229
IF- Conditional Assembly 231
IFcc - Conditional Assembly 233
INCLUDE - Include Text from Another File........................ 235
LIST-EnableListing.couiii e 236
LLEN-SetLineLength.o 238
LONGEVEN - Forcing Long-Word Alignment. 239
MACRO - Begin Macro Definition 240
MEXIT - Terminate Macro Expansion.cccovvinnnnn... 241
MLIST - List MaCro EXpansionsooviiiiiiiiin ... 243
NOLIST - DisableListingooiii it 246
NOPAGE - DisablePaging.t 248
OFFSET - Create AbsoluteSymbolst 249
ORG - SetLocation Counter.o ve e 251
PAGE - Insert PageBreakt 252
PLEN - SetPagelLength........... ... i, 253
RAD5S0 - Rad50 encoded stringconstants 254
SECTION - Declare Relocatable Section. 256
SET-SetSymbol Value. 258
SPC-Insert Blank Lines. ooi i 259
TABS-SetTablLength ... 260
TITLE - Provide Listing Title. e 261
XDEF - External Symbol Definition 262
XREF - External Symbol Reference. 263
XREFB - External Reference for Symbols located on the Direct Page 264
MaCIOS. . .. e 265
MBECIO OVEIVIBW . . . oottt e e e e e e e 265
Defining aMaCrot 265
CalingMaCrOSo 266
Macro Parameters.o 266
Macro Argument GrOUPING v vttt e e e e et e e e e e e 267
LabelsInsideMacroso 268
MaCro EXpansionoouiti i 269
NESted MECIOS . . . oottt et 270

© Copyright 1987-2003 Metrowerks

Table of Contents 9

Assembler ListingFile i 271
PageHeadero 271
SOUrCELIStiNg . .ot e 271

A, 272
REL 272
O .« e 273
OB, Code . .o 274
SOUICE LINE. . .. 275

MASM Compatibility o 277
Comment Linei e 277
CONSEANES . . .o 277

Integer CoNSLaNtSt 277
P A0S . v vttt 278
DIrECtIVES. . o .t 278

MCUasm Compatibility i 281
Labels. .o 281
SET DIreCtiVe. . .. oot 281
ObsSOlete DIreCtiVESot 281

Semi-Avocet Compatibility. 283
DITECtIVES . . ottt 283
Section Definition 284
Macro Parameters.o 286
Support for Structured Assembly. 286

SWItCh BIOCK. . . oo 286
FORBIOCK . ..ttt 287

Mix C and Assembler Applications 289
Memory Models. 289
Parameter Passing Scheme. i 290
ReturnValue 291
Accessing Assembly Variablesinan ANSI C SourceFile............. 291
Accessing ANSI C Variablesin an Assembly SourceFile............. 292
Invoking an Assembly Functioninan ANSI C SourceFile 293
Support for Structured TYPES.ot 295

Structured Type DEfinition. e 295
Type alowed for Structured Type Fields. 296
Variable DEfinition. 296
Varigble Declaration.t 297
Accessing Structured Variable. 298
Structured Type: LIMitations oot 299

Make Applicationst 301

Assembler Applications. 301

© Copyright 1987-2003 Metrowerks

10 Table of Contents
Generating directly an Absolute File........... .. i 301
Mixed C and assembler Applications.o, 301
Memory Mapsand Segmentation. 301
HOW TO .. o 303
How To Work with Absolute Sections. 303
Defining Absolute Sectionsin the Assembly SourceFile...................... 303
Linking an Application containing Absolute Sections. oo 304
How To Work with Relocatable Sections. 305
Defining Relocatable Sectionsinthe SourceFile o ot 305
Linking an Application containing Relocatable Sections 306
How To InitializetheVector Table it 307
Initidlizing the Vector TableintheLinker PRM File 308
Initializing the Vector Tablein the Source File using a Relocatable Section 309
Initializing the Vector Tablein the Source File using an Absolute Section 312
Splitting an Application into different Modules. 314
Using Direct Addressing modeto access Symbols. 316
Using Direct Addressing mode to Access External Symbols 316
Using Direct Addressing mode to Access Exported Symbols. 316
Defining SymbolsintheDirectPage.t
USING FOrCE OPEIEION v vttt ettt e e e e e e e et e e e
UsSiNg SHORT SeCtiONSot e e
Assembler Messages. oo i i
Al: UNKNOWN MESSA0E OCCUITEA o oottt ettt et e e e e ettt et e e
A2: Message overflow, skipping <kind> messages
AB0: Input file‘<file>" not found.
A51: Cannot open statisticlog file<file>.
AB2: Errorincommand line<emd>.
Ab4: Line Continuation occurred in<FileName> i
AB5: Environment macro expansion error '<description>' for <variablename> 320
AG66: Search path <Name> doesnot eXist.t 321
A1000: Conditional directivenot Closedoiii i 321
A1001: Conditiona elsenotallowed here 322
A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH block. . .
A1003: CASE or DEFAULT ismissing
A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest) 323
A1051: Zero Division in expression
A1052: Right parenthesisexpected.t
A1053: Left parenthesisexpected.
A1054: References on non-absol ute objects are not allowed when options -FA1 or -FA2 areenabled 325
AL055: Error iN@XPreSSiON.ottt et e e e e e s
A1056: Error a end Of EXPreSSIONttt
A1057: Cutting constant because of overflow
A1058: Illegal floating PoiNt OPEratioN.ttt e e e
A1059: !=istaken aSEQUALt
AL060: IMPliCIt COMMENT SEArtttt et et e ettt e et e et
A1061: Floating Point format is not supported for this case
A1062: Floating Point nUmber eXpectedttt
A1101: lllegal label: label isreserved.
A1103: Illegal redefinition of 1abel. o

© Copyr

ight 1987-2003 Metrowerks

Table of Contents 11

A1104:
A1201:

A1251:
A1252:
A1253:
A1301:
A1302:
A1303:
A1304:
A1305:
A1401:
A1402:
A1405:
A1406:
A1407:
A1408:
A1410:
Al1411:
Al1412:
A1413:
Al414:
A1415:
A1416:

A1417:
A1502:
A1503:
A1601:
A1602:
A1603:
A1604:
A1605:
A2301:
A2302:
A2303:
A2304:
A2305:
A2306:
A2307:
A2308:
A2309:
A2310:
A2311:
A2312:
A2313:
A2314:
A2316:
A2317:
A2318:
A2319:
A2320:
A2321:
A2323:
A2324:
A2325:

Undeclared user defined symbol: <symbolName>. i 328
Label <labelName> referenced in directive ABSENTRY . Only labels defined in acode segment are al-
lowed in the ABSENTRY directive328

Cannot open object file: Object filenametoolong. 329
The exported label <name>isusingan ELFextensioncoviiiiiiiiiinnnn. 329
Limitation: code size > <SizeLimit>bytes. i i 329
Structured type redefinition: <TYPENaME>ot 329
Type <TypeName> ispreviously defined aslabel 330
NOtype defined 330
Field <FieldName> is not declared in specifiedtype. i 331
TYPENAME EXPECLEA o o ettt ettt e et e e s 332
Valueout of range-128..127. s 332
Value out Of range -32768..32767.o ottt it 333
PAGE with initialized RAM not supported 334
HIGH with initialized RAM NOt SUPPOIed.ottt 335
LOW with initialized RAM not supported 335
Out of memory, Code SIZet00 1argeot et 335
EQU or SET labels are not allowed in aPC Relative addressingmode. 335
PC Relative addressing mode is not supported to CONStantS. oovvn i 336
Relocatable object <Symbol> not allowed if generating absolutefile........................ 336
Value out Of relalivVe range ottt ettt s 337
Cannot set fiXUPTO CONSLANE e e 337
Cutting fiXUP OVEITIOWo 337

Absolute section starting at <Address> size <Size> overlaps with absolute section starting at <Address>
337

Valueout of possiblerange. 338
Reserved identifiers are not allowed asinstruction or directive. 338
Error in option -D: <KDESCIPONS. . . .o\ttt ettt et e 338
Label must beterminated with @":" 339
Invalid character at end of label (<LabelName>): semicolon or spaceexpected 339
Directive, instruction or macro name expected: <SymbolName>detected 339
Invalid character detected at the beginning of theline: <Character>......................... 339
Invalid label name: <LabelName> 340
Label ISMISSING.o 340
MaCrO NAME ISMISSING . . .« .t vttt et ettt ettt e ettt 340
ENDM ISTIIEgAL. . . .ottt e et e e e e 341
Macro definition withindefinition 341
Illegal redefinition of instruction or directivename.............. ... 342
Macronot closed a end of SOUMCe.ttt 342
Macro redefinition. 343
Filename eXpected 343
Filenotfound 343
Size SPeCification EXPECIEU\ttt 344
Symbol NAME EXPECLEo 344
SN EXPECIEA o oottt et e et 345
Nesting of includefilesexceeds50.t 345
Expression must be absolute. 345
SeCtion NAME rEqUITED.ottt e e e e e e 346
Illegal redefinition of SeCtionNamMe.ottt 346
Sectionnotdeclared 347
Nosectionlinktothislabel.......... ... 347
Vauetoo small s 347
ValUBLO0 DG . . .o 348
Label isignored. 348
llegal Base (2,8,10,16)o vt ettt et e e e 349
Commaor Lineendexpected 350

© Copyright 1987-2003 Metrowerks

12

Table of Contents

A2326:
A2327:
A2328:
A2329:
A2330:
A2332:
A2333:
A2335:
A2336:
A2338:
A2340:
A2341:
A2342:
A2345:
A2346:
A2350:
A2351:
A2352:
A2353:
A2354:
A2355:
A2356:
A2356:
A2380:
A2381:
A2382:
A2383:
A2400:
A2401:
A2402:
A2500:
A2501:
A2502:
A2503:
A3000:
A4000:
A4001:
A4002:
A4003:
A4004:
A4005:
A4100:

A12001:
A12003:
A12004:
A12005:
A12006:
A12008:
A12009:
A12010:
A12102:
A12103:
A12104:
A12105:
A12107:

Label <Name>isredefined 350
ON OF OFF €XPECLEAttt e ettt e e e et e e e e e e e 351
Valueistruncated. 351
FAIL fOUNd ..o 351
Stringisnot allowed 352
FAIL fOUNd ..o 352
Forward referencenot allowed 353
Exported SET label isnot supported 353
Valuetoo big 353
SRalREASON>o 354
Macro parameter already defined 354
Relocatable Section Not Allowed: an Absolutefileis currently directly generated 355
Label in an OFFSET section cannot beexported i, 355
Embedded type definition not allowed 356
Directive or instruction not allowed in atype definition..................... 356
MEXIT isillegal (detected outside Of amMaCro).ttt 357
Expected Commato separate macro argumentst 357
Invalid CharaCtero 357
Illegal or unsupported directive SECT. e 358
Ignoring directive '<AireCtive>' 358
Illegal size SPeCification. 358
Ilegal RADS0 CharaCterottt et e et e 358
Illegal macro argument "Argument’ 358
CUtting very 1ong liNeo 358
Previous message was in this context <CONtext™t een i 359
Illegal character (\O) insourcefile.c i 359
INPUETINETO0 IONGo 359
End of LiNEeXPECIEUottt t et e 360
Complex relocatable expression not supportedo 360
COMMAEXPECTEA . . . o o oot ettt ettt e e e e e 361
Equal eXpected. 361
TO BXPECIEA v vttt ettt e s 362
ENDFOR MISSING .« ¢« vttt e ettt ettt e et e e e e e e e et e et e e e 362
ENDFOR WithOUt FORo e i 362
USEr reqUESIEA SEOP e ettt et 363
Recursive definition of label <Label name> o 363
DatadirectivecontainSnodata i 363
Variable access size differsfrom previousdeclaration 363
Found XREF, but no XDEF for label <Label>, ignoring XREF.coou... 364
QUAlIfier IgNOred 364
Access sizemismatch for <Symbol>. 364
Address space clash for <Symbol>o e 364
Illegal Addressing Mode 365
Valueistruncated to onebyteot 365
Valueistruncated totwo bytes o e 366
Vauemustbebetween 1and 8.o it e 366
Vaueistruncated tofivebits 366
Relative branch withillegal target. 366
Hlegal EXPreSSIONottt e e 366
REGISIEr EXPECEA ettt ettt 367
Pagevalue expected. 367
Operand NOt AllOWE 368
Immediate value expected 368
Immediate AddressModenot allowedo i 369
Illegal size specification for HC12-instruction 369

© Copyright 1987-2003 Metrowerks

Table of Contents 13

A12111:
A12202:
A12403:
A12404:
A12409:

A12411:

A12412:
A12600:
A12704:

Index .

Invalid Offset in TRAP instruction. valid offsetsare $30 .. $39and $40 .. $FF 370
Not ahcl2instruction or direCtiVeo e e 370
Value out Of range -256..255.ttt t et e s 370
Valueout of range-16..15. 372

In PC relative addressing mode, references to object located in another section or file are only allowed
for IDX2 addressing mode.372

Restriction: label specifiedinaDBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction should be de-
fined in the same section they are used.373

PCRisignored for thisaddressingmodettt 374
Address lower than segment current POSItion. o i 374
DEFSEG iSMISSING. . .\ttt ettt ettt ettt e et 374

© Copyright 1987-2003 Metrowerks

14 Table of Contents

© Copyright 1987-2003 Metrowerks

Assembler 15

Assembler

This document explains how to use the Macro Assembler.

Highlights
* Graphical User Interface
* On-lineHelp
« 32bit Application
» Conformsto Motorola Assembly Language Input Standard

Structure of this Document

. . description of the Macro Assembler Graphical User
Interface (GUI)

. . detailed description of the Environment variables used by the
Macro assembler

. : detailed description of the full set of Assembler options

. : detailed description of the input syntax in an assembly
input file.

. . list of all directives that the assembler supports

. . description of messages produced by the Macro Assem-

bler, including examples.

16

Assembler

Assembler 17

Using the Assembler

Assembler Environment

You can associate the assembler with a project directory and with an editor.

Project Directory

A project directory contains all of the environment files that you need to configure
your development environment.

When you install the assembler, the assembler automatically sets the project direc-
tory to the c: \ met r ower ks\ deno directory. This directory contains initializa-
tion files that are required for the tools to work correctly.

Editor

You can associate an editor with the assembler to enable the Error Feedback. You
can use the Configuration dialog box to configure the assembler to use the editor.
Please refer to the section of this manual.

Writing your Assembly Source File

Once your project has been configured, you can start writing your application.

Note: You can write an assembly application using one or several assembly units.
Each assembly unit performs one particular task. An assembly unit is com-
prised of an assembly source file and some additional include files. Vari-
ables are exported and imported in the different assembly units so that a
variable defined in an assembly unit can be used in another assembly unit.
You create the application by linking all of the assembly units.

Let's look at an example. Suppose that your source code is in a file named
t est . asmand looks like the following code:

XDEF entry ; Make the synbol entry visible for external nodul e.
; This is necessary to allowthe linker to find
; the synbol and use it as the entry point for the
; application.
initStk: EQJ $AFE ; Initial value for SP
dataSec: SECTION ; Define a section
var 1: DC W5 ; Assign 5 to the synbol varl

18 Assembler

codeSec: SECTICN ; Define a section for code
entry:

LDS #initStk ; Load stack pointer

LDD varl

BRA entry

When writing your assembly source code, pay specia attention to the following:

» Make sure that symbols outside of the current source file (in another source file
or in the linker configuration file) that are referenced from the current source file
are externally visible. Notice that we have inserted the assembly directive “ XDEF
ent r y” where appropriate in the example.

* In order to make debugging from the application easier, we strongly recommend
that you define separate sections for code, constant data (defined with DC) and
variables (defined with DS). This will mean that the symbols located in the vari-
able or constant data sections can be displayed in the data window component.

» Make sure to initialize the stack pointer when using BSR or JSR instructions in
your application.

Assembling your Source File

Once the sourcefileis available, you can assembleiit.

* Start the macro assembler. The assembler is started. You can enter the name of
the file that you want to be assembled in the editable combo box. The example
showsthe“t est . asni file.

Assembler 19

£ Aszsembler C:\Metrowerksidemo\project.ini

File Aszzembler “iew Help

DS M| 2 K oo =S X | k= |
Ready 171853 2

* You must correctly set the object file format (HIWARE or ELF/Dwarf). Select
menu entry Assembler | Options. The assembler displays the Option Settings dia-

log box.

Irput I Host I Code Generationl Messagesl Variousl

[10bject File Format

[w]Generate a listing file

100 ot print macro call in list file

[100 not print macro definition in list file

[100 not prink macro expansion in list file

[100 not print included files in list file

[10bject file name specification [enter [<file:]]

Ok, I Cancel | Help |

* In the Output folder, select the check box labeled Object File Format. The
assembler displays more information at the bottom of the dialog box.

20 Assembler

Option Settings

Qutput | It I Hozt I Code Generationl Messagesl Variousl

Object File Farmat

[w]Generate a listing file

100 nat print macro call in list file

(100 not print macro definition in list file

(100 not print macro expansion in list file
(100 not print included files in list file
[10bject file name specification [enter [<file:])

-Flhl&2ola2|2ol2]: Object File Format

Obiject File

ak. I Cancel | Help I

* Select the entry ELF/DWARF 2.0 Object File Format or the HIWARE Object File
Format in the list box and click OK.
The assembler starts to assemble the file when you click on the assemble button

(&)

A Assembler C:\Metrowerks\demo\project.ini

File Assembler Wiew Help
DS H 2 8|E

TESC.asm
Command Line: 'test.asw'

& &= E

Top: C:\Metrowerks\demo\test.asm

writitng debug listcing to CiyMetrowerkshdewmo' test,dbg

Output f£ile: "C:\Metrowerks'\dewo)\test.o™

Code Fize: 10

Aszembler: *%% 0 error(s), 0 warningi(s), 0 information message(s) %%
Assembhler: ***% Processing ok **%

Processing ok 172200

» The Macro Assembler indicates successful assembling by printing the number of
bytes of code that were generated. The message “*** 0 error(s), ” indi-
catesthat thet est . asmfile was assembled without errors.

» The Macro Assembler generates a binary object file and a debug file for each

Assembler 21

source file. The binary object file has the same name as the input module, but

withthe*. o’ extension. The format of thisfileiscontrolled by the .The
debug file has the same name as the input module, but with the ‘. dbg’ exten-
sion.

* When the assembly is specified on the command line, the Macro

Assembler generates alisting file containing the source instruction and the corre-
sponding hexadecimal code. The listing file generated by the Macro Assembler
looks like the following example:

HC12- Assenbl er
Abs. Rel. Loc (bj. code Source line

1 1 XDEF entry ; Make the synmbol entry ...
2 2 ; This is necessary to ...
3 3 ; the synbol and use it ...
4 4 ; application.

5 5 0000 OAFE initStk: EQU $AFE Initial SP

6 6 dataSec: SECTION ; Define a section

7 7 000000 0005 varl: DC W5 ; Assign 5to varl

8 8 codeSec: SECTION; Define a code ...
9 9 entry:

10 10 000000 CF OAFE LDS #initStk ; Load stack pointer
11 11 000003 FC xxxx LDD var1l

12 12 000006 20F8 BRA entry

Linking Your Application

Once the object fileis available, you can link your application. The linker organizes
the code and data sections according to the linker parameter file.

» Start your editor and create the linker parameter file. You can use the file
fi bo. pr mlocated in the demo directory and renameittot est . prm

* Inthefilet est . pr m change the name of the executable and object filesto test.
Additionally, you can aso modify the start and end address for the ROMand RAM
memory area. Themodulet est . pr mwill look like the following:

LINK test. abs /* Name of the executable file generated.*/
NAMES test.o END /* Name of the object files in the application */
SECTI ONS

MY_ROME READ ONLY 0x800 TO Ox8FF; /* READ CONLY nernory area */
MY_RAME READ WRI TE 0xB0OO TO OxBFF; /* READ WR TE nenory area */
MY_STK= READ WR TE 0xA00 TO OxAFF;, /* READ WR TE nenory area */
END

PLACEMENT

22 Assembler

DEFAULT_ROM cstSec INTO MY_ROM /* Code shoul d be
allocated in W_RQM */

DEFAULT_RAM INTO MY_RAM /* Variables shoul d be
al located in W_RAM */
SSTACK INTO W_STK; /* Stack will

be allocated in MY_STK */
END

INT entry /* entry is the entry point to the application. */
VECTCR ADDRESS OXFFFE entry

Note: The placement of the SSTACK section in the memory area MY_STK is

optional. It is only required when the application is executed in the simula-
tor to ensure some memory is available for the stack.

* The commands in the linker parameter file are described in detail in the linker
manual.

o Start the linker.
« At the prompt, enter the name of the file that you want to link .

SmartLinker C:\Metrowerks\demo\project.ini

File SmartLinker “iew Help
DS |28 e x| 2 E
Ready 17:30:51

* Pressthe enter key to start linking.

Assembler 23

SmartLinker C:‘\Metrowerks\demo\project.ini

Eile Smartlinker “iew Help
Dﬁu|?*?|ltest.prm j|@|}v@|ﬁ

test.prm

Command Line: 'test.prm'

C:vMetrowerkshdenostest.pru: INFORMATION L4003: Linking C:yMetrowerkshdemotest.prn
INFORMATION LZ01Z: Reading directories of:

C:vMetrowerkshdemos test. o

WARNING LzZ0&66: Wariable "_startuplata”™ not found, linker prepares no startup
Searching objects ...

WARNTING Lz300: Zemment MY RAM not found in any objectfile

WARNING L2300: Semment _ZEROPAGE not found in any obijectfile

Allocating objects ...

Making Fixups ...

Writing EMap ...

CivMetrowerks' dewo test, MAP: INFORMATION L2203: Listing of link process to CiyMetrc
INFORMATION LZ2103: Linking succeeded. Executable is written to CiyMetrowerks)demodt
Smartlinker: ¥%%% 0 error(=), 3 warhingis), 4 information message(z) #%%
Smartlinker: %%% Processing ok *%%

< | i
Ready 173403 4

Directly Generating an ABS File

The assembler can directly generate an ABS file from your assembly source file.
The assembler generates a Motorola S file at the same time. You can directly burn
the Sfileinto an EPROM.

Note: The assembler for the Philips XA does not support the ELF format. Directly
generating an ABSfileisonly possiblein ELF.

Assembler source file

When an ABS file is directly generated using the assembler, no linker is involved.
This means that the application must be implemented in a single assembly unit and
must only contain absolute sections.

For example, suppose your source code is stored in a file named abst est . asm
and looks like the following code:

ABSENTRY entry ; Specifies the application Entry point
ini Stk: EQU $AFE ; Initial value for SP

CRG $FFFE ; Reset vector definition
Reset: DC Wentry

24 Assembler

CRG $40 ; Define an absol ute constant section
var 1: DC B 5 ; Assign 5 to the synbol varl

CRG $80 ; Define an absol ute data section
dat a: DS. B 1 ; Define one byte variable in RAMat $80

CRG $B00 ; Define an absol ute code section
entry:

LDS #iniStk ; Load stack pointer

LDAA varl
mai n

| NCA

STAA data

BRA main

When writing your assembly source file for direct absolute file generation, pay spe-
cial attention to the following points:

» Thereset vector isusually initialized in the assembly source file with the applica-
tion entry point. An absolute section containing the application entry point
addressis created at the reset vector address. To set the entry point of the applica
tion at address $FFFE on the label ent r y, the following code is needed:

CRG $FFFE ; Reset vector definition
Reset: DC Wentry

 The directive ABSENTRY is used to write the address of the application entry
point in the generated absolute file. To set the entry point of the application on
thelabel ent ry in the absolute file, the following code is needed:

ABSENTRY entry

* It isstrongly recommended to use separate sections for code, data and constants.
All sections used in the assembler application must be absolute and defined using
the ORG directive. The address for constant or code sections has to be located in
the ROM memory area, while the data sections have to be located in RAM area
(according to the hardware which is used). It is the programmer’s responsibility
to ensure that no section overlaps occur.

Assembling and generating the application

Once the source fileis available, you can assemble it.

» Start the Macro Assembler. The assembler is started. Enter the name of the fileto
be assembled in the editable combo box, in our exampleabst est . asm

Assembler 25

A Aszszembler C:\Metrowerks\demoiproject.ini

File Aszembler Wiew Help
0= - | ? N2 ||abstest.asm-fa2 ﬂ| 2 | K = | =]
Ready 16:46:28 4

» Select menu entry Assembler | Options. The Option Settings dialog box is dis-
played.

« Inthe Output folder, select the check box in front of the label Object File Format.
The assembler displays more information at the bottom of the dialog box.

* Select the radio button ELF/DWARF 2.0 Absolute File and click OK. The assem-
bler is now ready to generate directly an absolutefile.

* Click the assemble button to assemble thefile.

A Aszszembler C:\Metrowerks\demoiproject.ini

File Aszembler Wiew Help

O = u| @ k’?“abstest.asm-faZ ﬂ|@ | y o E|ﬁ

ahatest, asm
Command Line: 'ashstest.asm -faz'

Top: C:\Metrowerks\dewmo'abstest.asn

writing debug listing to CiyMetrowerks'dewohabstest.dbg
Generating 3Record File 'CivMetrowerks'demo'abstest.ss'
Jutput file: "C:\Metrowerks)dewo'abstest.abs"™

Code Size: 11

*%% [erroris), 0 warning(s), 0 information message(s) ***
% Processing ok FFF

Processing ok 16:47:33 4

* You can load the generated absolute . abs file in the debugger.

26

Assembler

* The . sx file generated is a standard Motorola S record file. You can directly
burn thisfileinto a EPROM memory.

Assembler 27

Assembler Graphical User Interface

The Macro Assembler runs under Windows 9X, Windows NT and compatible oper-
ating systems.

Run the assembler.

Starting the Assembler

When you start the assembler, the assembler displays a standard Tip of the Day win-
dow containing the news about the assembler.

Tip of the Day

@ Did you know...

*t'ou can alzo aszemble a file by simply dragaging it from
the file manager or explorer to the azzembler window,

[Show Tips on StartUp Cloze |

Click Next Tip to see the next piece of information about the assembler.
Click Closeto close the Tip of the Day dialog box.

If you do not want the assembler to automatically open the standard Tip of the Day
window when the assembler is started, uncheck Show Tips on SartUp.

If you want the assembler to automatically open the standard Tip of the Day window
at assembler start up, choose Help|Tip of the Day The assembler displaysthe Tip
of the Day dialog box. Check the Show Tips on SartUp check box.

28 Assembler

Assembler Main Window

henu Bar
Toal Bar

A Assembler C:\Metrowerks\demo\project.ini

File Assembler View Help
DEHE|?W(E

test. asn
Command Line: 'test.asm'

e s sfmE

Top: CiyMetrowerkshdemo'\test.asn

writing debug listing to C:\Metrowerks‘\demwo)test.dbg

Output file: "CiyMetrowerkshdewo)test.o"

Code 5ize: 10

Azzembler: *%% 0 error(s), 0 warning(s), 0 information wessage(s) *%%
Azsembler: *%*% Processing ok *%%

Processing ok 172200 2

Status Bar Content &rea

This window is only visible on the screen when you do not specify any file name
when you start the assembler.

The assembler window consists of awindow title, amenu bar, atool bar, a content
area and a status bar.

Window Title

The window title displays the assembler name and the project name. If a project is
not loaded, the assembler displays “ Default Configuration” in the window title. An
asterisk (*) after the configuration name indicates that some settings have changed.
The assembler adds an asterisk (*) when an option, the editor configuration or the
window appearance changes.

Assembler 29

Content Area

The assembler displays logging information about the assembly session in the con-
tent area. Thislogging information consists of:

« the name of the file being assembled,

« the whole name (including full path specifications) of the files processed (main
assembly file and all filesincluded),

« thelist of the error, warning and information messages generated and
» the size of the code generated during the assembly session.

When afileis dropped into the Assembly window content area, the assembler either
loads the corresponding file as a configuration file or the assembler assembles the
file. The assembler loads the file as a configuration if the file has the extension
i ni . If thefile does not end with the .i ni extension, the assembler assembles the
file using the current option settings.

All text in the assembler window content area can have context information consist-
ing of two items:

« afilenameincluding a position inside of afile
* amessage number
File context information is available for al output lines where a file name is dis-

played. There are two ways to open the file specified in the file context information
in the editor specified in the editor configuration:

« If afile context is available for aline, double-click on aline containing file con-
text information.

* Click with the right mouse on the line and select “Open ..”. This entry is only
avalableif afile context is available.

Main Help
Help on "A2301: Label iz mizzing"

azm’

: Define a constant relocata..."!

If the assembler cannot open afile even though a context menu entry is present, this
means that the editor configuration information is not correct (see the section
below).

The message number is available for any message output. There are three ways to

30 Assembler

open the corresponding entry in the help file:
« Select one line of the message and press the F1 key. If the selected line does not
have a message number, the main help is displayed.

» Press Shi f t - F1 and then click on the message text. If the point clicked at does
not have a message number, the main help is displayed.

* Click the right mouse button on the message text and select Help on This
entry isonly available if amessage number is available.

Iain Help
Help an Label iz miszing"*

Hi& & | L=
T F 3
[I Stop
Command Line
Azzemble
Context Help Options
On Line Help Messages
Save current C onfiguration
Clear Azzembler
Load & Configuration Wincow

Mewy Configuration

The three buttons on the left hand side of the toolbar correspond to the menu items

of the File menu. The New [, the Load '@ and the Save & buttons allow you to
reset, load and save configuration files for the Macro Assembler.

TheHelp button ® and the Context Help button *2 allow you to open the Help file
or the Context Help.

When pressing *2 , the mouse cursor changes to a question mark beside an arrow.

Assembler 31

The assembler opens help for the next item on which you click. You can get specific
help on menus, toolbar buttons or on the window area by using this Context Help.

The editable combo box contains the list of the last commands executed. Once a
command line has been selected or entered in this combo box, click the Assemble

button g to execute this command. The Sop button becomes enabled when
some file is assembled. When it is pressed, the assembler stops the assembly.

The Options Dialog Box button 4 allows you to open the Option Settings dialog.

The Message Dialog Box button [B2 allows you to open the Message Settings dia-
log box.

The Clear button B allows you to clear the assembler window content area.

Status Bar
.Processing ok 1?:2.2:00 él
MEesEaYe area current time

When pointing to a button in the tool bar or a menu entry, the message area displays
the function of the button or menu entry you are pointing to.

Assembler Menu Bar

The following menus are available in the menu bar:

Menu Description

Contains entries to manage Assembler configuration files
Contains entries to set Assembler options

Contains entries to customize the assembler window output

32 Assembler

Menu Description
Help A standard Windows Help menu
File Menu

With the file menu, Assembler configuration files can be saved or loaded. An
Assembler configuration file contains the following information:

« the assembler option settings specified in the assembler dialog boxes
« thelist of the last command line executed and the current command line.
« the window position, size and font.

« the editor currently associated with the assembler. This editor may be specifically
associated with the assembler or globally defined for all Tools (See
).
« the Tips of the Day settings, including if enabled at startup and which is the cur-
rent entry.

« Configuration files are text files which have the standard extension . i ni . The
user can define as many configuration files as required for his project and can
switch between the different configuration files using the File | Load Configura-
tion and File | Save Configuration menu entry or the corresponding tool bar but-

tons.

Menu entry Description

Assemble A standard Open File dialog box is opened, displaying the list
of all the. asmfiles in the project directory. The input file
can be selected using the features from the standard Open
File dialog box. The selected file is assembled when the Open
File dialog box is closed clicking OK

New/Default Resets the assembler option settings to the default value. The

Configuration assembler options which are activated per default are speci-

fied in section

Load Configuration A standard Open File dialog box is opened, displaying the list
of all the. i ni filesin the project directory. The configura-
tion file can be selected using the features from the standard
Open File dialog box. The configuration data stored in the
selected fileisloaded and used by further assembly sessions.

Assembler

33

Menu entry

Description

Save Configuration

Save Configuration
as...

Configuration...

1. project.ini
2. ...

Exit

Assembler Menu

Savesthe current settingsin the configuration file specified on
thetitle bar.

A standard Save As dialog box is opened, displaying thelist of
all the. i ni filesin the project directory. The name or loca-
tion of the configuration file can be specified using the fea-
tures from the standard Save As dialog box. The current
settings are saved in the specified configuration file when the
Save As dialog box is closed clicking OK.

Opens the Configuration dialog box to specify the editor used
for error feedback and which parts to save with a configura-
tion.

See
and

Recent project list. This list can be used to open a recently
opened project again.

Closes the assembler.

This menu allows you to customize the assembler. You can graphically set or reset
Assembler options or stop assembling.

Menu entry Description
allows you to define the options which must be activated when
assembling an input file (See).
allows you to map messages to a different message class (See
Sop assembling Sops assembling of the current source file.
View Menu

This menu alows you to customize the assembler window. You can specify if the
status bar or the tool bar must be displayed or hidden. You can also define the font

34 Assembler

used in the window or clear the window.

Menu entry Description

Tool Bar switches display from the tool bar in the assembler window.

Satus Bar switches display from the status bar in the assembler window.

Log... allows you to customize the output in the assembler window
content area. The following entries are available when Log...
is selected:

Change Font opens a standard font dialog box. The options selected in the
font dialog box are applied to the assembler window content
area.

Clear Log allows you to clear the assembler window content area.

Editor Settings Dialog Box

The Editor Setting dialog box has a main selection entry. Depending on the main
type of editor selected, the content below changes.

There are the following main entries:

Assembler 35

Global Editor (Shared by all Tools and Projects)

Configuration [X]

Editor Settings I Save Configuration | Environment |
' Global Editor [Shared by all Toals and all Projects)
= Local Editor [Shared by all Taals)
" Editar started with Command Line
" Editor Camrmunication with DDE
= Codewfarrior [with CO)

Editar Mame IlDF

Editar Executable Ic: smetrowerkshproghidf. exe |

Editor &rguments sz -g%l%c

uze Zf for the filename, I for the ling and e for the column

Ok, I Cancel Help

This entry is shared by all tools (compiler/linker/assembler/...) for al projects. This
setting is stored in the [Edi t or] section of the global initialization file MCU-
TOOLS. | NI . Some can be specified in the editor command line.

36 Assembler

Local Editor (Shared by all Tools)

Configuration [X]

Editor Settings | Save Configuration | Environment |
€~ Global Editar [Shared by all Toals and all Projects)
' Lacal Editor [Shared by all Taals)
" Editor started with Command Line
" Editor Communication with DDE
€ Codevw/arior [with COM)

Editar Mame IlDF

Editar Executable Ic:\metrowerks\prog\idf.eHe |

Editor Arguments sz -g%%d

uge 2f for the filename, 2 for the line and %c for the column

QK I Cancel | Help |

This entry is shared by all tools (compiler/linker/assembler/...) for the current
project. This setting is stored in the [Edi t or] section of the local initidization
file, usualy pr oj ect . i ni inthe current directory. Some can be speci-
fied in the editor command line.

The global and local editor configuration affects other tools besides the assembler.
It is recommended to close other tools while modifying these topics.

Assembler 37

Editor started with Command Line

Configuration [X]

Editor Settings I Save Configuration | Environment |
= Global Editor [Shared by all Toals and all Projects)
= Local Editor [Shared by all Taals)
% Editor started with Command Line
" Editor Camrmunication with DDE
= Codewfarrior [with CO)

Command Line

covmetrowerkshproghidf. exe 7F g%l %c |

uze Zf for the filename, I for the ling and e for the column

Ok, I Cancel | Help |

When this editor type is selected, a separate editor is associated with the assembler
for error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor.
The format from the editor command depends on the syntax which should be used

to start the editor. Some can be specified in the editor command line to
refer to afile name of aline number (See section below).
Example

For the IDF use (with an adapted path to thei df . exe file)
C\rmetrowerks\prog\idf.exe % -g%, %

For the CodeWright use (with an adapted path to the cw32. exe file)
C \cwB2\ cw32. exe % -g%

For WinEdit 32 bit version use (with an adapted path to thewi nedi t . exe file)
C\WnEdi t32\WnEdit.exe % /#: %

38 Assembler

Editor started with DDE

Configuration [X]

Editor Settings | Save Configuration | Environment |
€~ Global Editar [Shared by all Toals and all Projects)
 Laocal Editor [Shared by all Taals)

" Editor started with Command Line

% ‘Editor Commuriication with DDE:

€ Codevw/arior [with COM)

Service Mame Imsdev
Topic Mame Isystem
Client Cammand I[open[Zf]]

uge 2f for the filename, 2 for the line and %c for the column

QK I Cancel | Help |

Enter the service, topic and client name to be used for a DDE connection to the edi-
tor. All entries can have for the file name and line number as explained
below in the modifiers section.

Example
For Microsoft Developer Studio use the following setting:

Service Name: "msdev"
Topic Name: "system”
ClientCommand: "[open(%f)]"

Assembler 39

CodeWarrior with COM

Configuration [X]

Editor Settings I Save Configuration | Environment |
= Global Editor [Shared by all Toals and all Projects)
= Local Editor [Shared by all Taals)
" Editar started with Command Line

" Editor Communication with DDE

Ok, I Cancel | Help |

If CodeWarrior with COM is enabled, the CodeWarrior IDE (registered as COM
server by theinstallation script) is used as editor.

Modifiers

The configurations may contain some modifiers to tell the editor which file to open
and at which line.

- The %f modifier refers to the name of the file (including path and extension)
where the error has been detected.

- The %l modifier refers to the line number where the message has been detected.

- The %c modifier refers to the column number where the message has been
detected.

Note: Be careful. The %l modifier can only be used with an editor which can be
started with a line number as parameter. Thisis not the case for WinEdit
version 3.1 or lower or for the Notepad. When you work with such an editor,

40 Assembler

you can start it with the file name as parameter and then select the menu
entry ‘Go to’ to jump on the line where the message has been detected. In
that case the editor command looks like:

C: \ W NAPPS\ W NEDI T\ W nedi t . EXE %

Please check your editor manual to define the command line which should
be used to start the editor.

Save Configuration Dialog Box

Configuration
Editor Settings Save Configuration |En\rironment|

Items ta S ave
Save

Iv Editor Configuration Save Az |

V¥ &ppearance [Position, Size, Font)

¥ Erwvironment Yarishles

¥ Save on Exit

Al marked iternz are saved. Already contained, not
changed items remain valid

QK I Cancel Help

The second index of the configuration dialog box contains al options for the save
operation.

In the Save Configuration index, four check boxes alow you to choose which
items to save into aproject file while the configuration is saved.

This dialog box has the following configurations:

» Options: Thisitem isrelated to the option and message settings. If this check box
is set the current option and message settings are stored in the project file when
the configuration is saved. By disabling this check box, changes done to the

Assembler 41

option and message settings are not saved, the previous settings remain valid.

« Editor Configuration: This item is related to the editor settings. If you set this
check box, the current editor settings are stored in the project file when the con-
figuration is saved. If you disable this check box, the previous settings remain
valid.

 Appearance: This item is related to many parts like the window position (only
loaded at startup time) and the command line content and history. If you set this
check box, these settings are stored in the project file when the current configura-
tion is saved. If you disable this check box, the previous settings remain valid.

» Environment Variables: With this set, the environment variable changes done in
the Environment property sheet are saved too.

Note: By disabling selective options only some parts of a configuration file can be
written. For example when the best Assembler options are found, the save
option mark can be removed. Then future save commands will not modify
the options any more.

» Save on Exit: If this option is set, the assembler writes the configuration on exit.
The assembler does not prompt you to confirm this operation. If this option isnot
set, the assembler does not write the configuration at exit, even if options or
another part of the configuration has changed. No confirmation will appear in
any case when closing the assembler.

Note: Almost all settings are stored in the project configuration file.
The only exceptions are:
- The recently used configuration list.
- All settings in this dialog box.

Note: The configurations of the assembler can, and in fact are intended to, coexist
in the samefile as the project configuration of other tools and the IDF.
When an editor is configured by the shell, the assembler can read this con-
tent out of the project file, if present. The default project configuration file
name is project.ini. The assembler does automatically open an existing
project.ini in the current directory at startup. When using the at
startup or loading the configuration manually, also a different name than
project.ini can be chosen.

Environment Configuration Dialog

On the third page of the configuration dialog is used to configure the environment.
The content of the dialog is read from the actual project file out of the section

42 Assembler

Configuration

EditorSettingsl Save Corfiguration Enviranment |

General Path

Object Path

Text Fath

Absolute Path

Header Fil= Path

WVarious Erwinabment ¥ ariables

|${INST.-’-‘«LLPATH}\Iib\${CPU}c\Iib |

Aol |Change| Deletel lx] | Downl

$INSTALLPATH b WECPU ebib
FIMNSTALLPATHMiBA${CPUchare

Ok I Cancel | Help |

[Environment Variables] The following variables are available:

Genera Path: GENPATH
Object Path: OBJPATH
Text Path: TEXTPATH
Absolute Path;: ABSPATH
Header File Path: LIBPATH

Various Environment Variables: other variables not covered by the above list.

The following buttons are available:

Add: Adds a new line/entry
Change: changes a line/entry
Delete: deletes aline/entry

Up: Moves aline/entry up
Down: Moves aline/entry down

Note that the variables are written to the project file only if you press the Save But-
ton (or using File->Save Configuration, or CTRL-S). Additionally in the Save Con-
figuration dialog it can be specified if the environment is written to the project file
or not.

Assembler

Option Settings Dialog Box

Assembler Option Settings B3
Output I Input I Haost I Code Generation I Messages I W arious I

[|0bject File Farmat

G enerate a listing file

WL o not pint rnacro call i list file
[Do not print macro definilion in list file

[Do not print macro expansion in list file

[100 not print included files in list file

[10bject file name specification [enter [<file>]]

-Lc: Do nat print macro call in list file

Click. on the checkbox of any option to enable it

Qg I Cancel I Help |

This dialog box allows you to set/reset Assembler options. The options available
are arranged into different groups, and a sheet is available for each of these groups.
The content of the list box depends on the selected sheet:

Group Description

Output lists options related to the output files generation (which kind
of file should be generated).

Input lists options related to the input files.

Host lists options related to the host.

Code Generation
Messages

\arious

lists options related to code generation (memory models, ...).
lists options controlling the generation of error messages.

list various additional options (options used for compatibility,

).

An Assembler option is set when the check box in front of it is checked. To obtain
more detailed information about a specific option, select it and pressthe F1 key or

44 Assembler

the Help button. To select an option, click once on the option text. The option text is
then displayed inverted.

When the dialog box is opened and no option is selected, pressing the F1 key or the
Help button shows the help about this dialog box.

The available options are listed in the section

Message Settings Dialog Box

Message Settings
Dizabled | Infarmation | Waming Emmar | Fatal I

A1000; Conditional directive not closed o [Moveto:
41001: Conditional else not allowed here Dizabled
A1051: Zero Division in expression _—
41052 Right parenthesis expected |rfarmatiar
) TG
A1055: Emor in expression _—
A105E: Emor at end of expression Erar,
A1101: llegal label: label iz rezerved
41103 legal redefinition of label
A1104: Undeclared uzer defined symbol : <Spmbalx Default |
A41207: Label <Label> referenced in directive ABSENT
A1251: Cannot open object file: Object file nanme too lo >
4 I I 3

0k | Cancel | Help

This dialog box alows you to map messages to a different message class.

Some buttons in the dialog box may be disabled, e.g. if an option cannot be moved
to an information message, the ‘Move to: Information’ button is disabled. The fol-
lowing buttons are available in the dialog box:

Button Description
Move to: Disabled The selected messages are disabled, they will no longer be
displayed.

Move to: Information The selected messages are changed to information messages.
Move to: Warning The sel ected messages are changed to warning messages.

Moveto: Error The sel ected messages are changed to error messages.

Assembler

Button

Description

Moveto: Default

Reset All
Ok
Cancel
Help

A sheet is available for each error message class and the content of the list box

The selected messages are changed to their default message

type.

Resets all messages to their default message type.

Exits this dialog box and accepts the changes made.

Exits this dialog box without accepting the changes made.

Displays online help about this dialog box.

depends on the selected sheet:

M essage group Description

Disabled Lists all messages disabled. That means that messages dis-
played in thelist box will not be displayed by the assembler.

Information Lists all information messages. Information messages informs
about action taken by the assembler.

Warning Lists all warning messages. When such a message is gener-
ated, trandation of the input file continues and an object file
will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is gener-

Each message hasits own character (‘A’ for Assembler message) followed by a4-5
digit number. This number alows an easy search for the message both in the man-

ual or on-line help.

ated, trandation of the input file stops immediately. Fatal
messages cannot be changed. They are only listed to call con-
text help.

Changing the Class associated with a Message

You can configure your own mapping of messages to the different classes. To do

46 Assembler

this, use one of the buttons located on the right hand of the dialog box. Each button
refers to a message class. To change the class associated with a message, you have
to select the message in the list box and then click the button associated with the
class where you want to move the message.

Example
To define the warning * A2336: Valuetoo big' as an error message:

* Click the Warning sheet, to display the list of al warning messages in the list
box.

« Click on the string * A2336: Value too big' in the list box to select the message.
* Click Error to define this message as an error message.
Note: Messages cannot be moved from or to the fatal error class.

Note: The‘Moveto’ buttons are enabled when all selected messages can be
moved. When one message is marked, which cannot be moved to a specific
group, the corresponding ‘Move to’ button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message settings dialog box with the 'OK' button. If you close
it using the 'Cancel’ button, the previous message mapping remains valid.

About Box

The about box can be opened with the menu Help->about. The about box contains
much information including the current directory and the versions of subparts of the
assembler. The main assembler version is displayed separately on top of the dialog
box.

With the button ‘Extended Information’ it is possible to get license information
about all software components in the same directory of the executable.

Click on OK to close this dialog box.

Note: During assembling, the subversions of the sub parts cannot be requested.
They are only displayed if the assembler is not processing files.

Specifying the Input File

There are different ways to specify the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration per-

Assembler 47

formed by the user in the different dialog boxes, and according to the options speci-
fied on the command line.

Before starting to assemble a file, make sure you have associated a working direc-
tory with your assembler.

Use the Command Line in the Tool Bar to Assemble

Assembling a New File

A new file name and additional Assembler options can be entered in the command
line. The specified file is assembled when you press the Assembl e button in the tool
bar or when you press the enter key.

Assembling a file which has already been assembled

The commands executed previously can be displayed using the arrow on the right
side of the command line. A command is selected by clicking onit. It appearsin the
command line. The specified file will be processed when the button Assemble in the
tool bar is selected.

Use the Entry File | Assemble...

When the menu entry File | Assemble... is selected a standard file Open File dialog
box is opened, displaying the list of al the . asmfilesin the project directory. The
user can browse to get the name of the file he or she wants to assemble. Select the
desired file and click Open in the Open File dialog box to assemble the selected file.

Use Drag and Drop

A file name can be dragged from an external software (for example the File Man-
ager/Explorer) and dropped into the assembler window. The dropped file will be
assembled when the mouse button is released in the assembler window. If afile
being dragged has the extension . i ni , it is considered to be a configuration and it
isimmediately loaded and not assembled. To assemble a source file with the exten-
sion. i ni , use one of the other methods.

Message/Error Feedback

After assembly, there are severa ways to check where different errors or warnings
have been detected. Per default, the format of the error message looks as follows:

48 Assembler
>> <Fi | eName>, |ine <line nunber>, col <col um nunber>, pos <absol ute
positionin file>
<Portion of code generating the problen»
<nmessage cl ass><nmessage nunber>: <Message string>

Example
>> in "C\netrowerks\deno\fiboerr.asn', line 18, col 0, pos 722
DC | abel

AN

ERROR A1104: Undecl ared user defined synbol: |abel

See also Assembler options , , , ,
and for different message formats.

Use Information from the Assembler Window

Once afile has been assembled, the assembler window content area displays the list
of all the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

Use a User Defined Editor

The editor for Error Feedback can be configured using the Configuration dialog
box. Error feedback is performed differently, depending on whether or not the edi-
tor can be started with aline number.

Line Number Can be Specified on the Command Line

Editors like the IDF, WinEdit (vO5 or higher) or Codewright can be started with a
line number in the command line. When these editors have been correctly config-
ured, they can be started automatically by double clicking on an error message. The
configured editor will be started, the file where the error occurs is automatically
opened and the cursor is placed on the line where the error was detected.

Line Number Cannot be Specified on The Command Line

Editors like WinEdit v31 or lower, Notepad, Wordpad cannot be started with aline
number in the command line. When these editors have been correctly configured,
they can be started automatically by double clicking on an error message. The con-
figured editor will be started and the file where the error occurs is automaticaly
opened. To scroll to the position where the error was detected, you have to:

* Activate the assembler again.

Assembler 49

* Click the line on which the message was generated. This line is highlighted on
the screen.

 Copy thelinein the clipboard pressing CTRL + C.

« Activate the editor again.

 Select Search | Find, the standard Find dialog box is opened.

 Copy the content of the clipboard in the Edit box pressing CTRL + V.
* Click Forward to jump to the position where the error was detected.

50

Assembler

Assembler 51

Environment

This part describes the environment variables used by the assembler. Some of those
environment variables are also used by other tools (e.g. Linker/Compiler), so con-
sult also their respective manual.

There are three ways to specify of environment:

1) The current project file with the section [Environment Variables]. This file may
be specified on Tool startup using the option. This way is recommended and
also supported by the IDF.

2) An optional ‘default.env’ file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified
using the variable . Using the default.env file is not recom-
mended.

3) Setting environment variables on system level (DOS level). This is not recom-
mended.

Various parameters of the assembler may be set in an environment using so-called
environment variables. The syntax is always the same:

Paraneter = KeyNarme "=" Par anbDef.
Example

GENPATH=C. \ | NSTALL\ LI B; D: \ PRQJECTS\ TESTS; / usr /| ocal / I i b; / hore/ e/
ny_proj ect

These parameters may be defined in several ways:
Using system environment variables supported by your operating system.

Putting the definitionsin afile called DEFAULT. ENV (. hi def aul t s for UNIX)
in the default directory.

Putting the definitions in afile given by the value of the system environment vari-
able

Note: The default directory mentioned above can be set via the system environ-
ment variable DEFAULTDI R

When looking for an environment variable, al programs first search the system
environment, then the DEFAULT. ENV (. hi def aul t s for UNIX) file and finally
the globa environment file given by . If no definition can be
found, a default value is assumed.

52 Assembler

Note: The environment may also be changed using the Assembler option

The Current Directory

The most important environment for all tools is the current directory. The current
directory isthe base search directory where the tool startsto search for files (e.g. for
the DEFAULT.ENV / .hidefaults)

Normally, the current directory of atool started is determined by the operating sys-
tem or by the program who launches the tools (e.g. IDF, Make Utility, ...).

For the UNIX operating system, the current directory for an executable is also the
current directory from where the binary file has been started.

For MS Windows based operating systems, the current directory definition is quite
complex:

« |f thetool islaunched using a File Manager/Explorer, the current directory is the
location of the executable launched.

« |f the tool is launched using an Icon on the Desktop, the current directory is the
one specified and associated with the Icon in its properties.

« If the tool is launched by dragging afile on the icon of the executable under Win-
dows 95 or Windows NT 4.0, the desktop is the current directory.

« If the tool is launched by another launching tool with its own current directory
specification (e.g. an editor as IDF, aMake utility, ...), the current directory is the
one specified by the launching tool (e.g. current directory definitionin IDF).

* When local project file is loaded, the current directory is set to where the loca
project file is in. Changing the current project file does aso change the current
directory if the other project file isin a different directory. Note that browsing for
an assembly source file does not change the current directory.

To overwrite this behavior, the system environment variable may be
used.

The current directory is displayed among other information with the assembler
option “-v” and in the about box.

Environment Macros

It is possible to use Macros in your environment settings.

Example:

Assembler 53

M/VAR=C. \ t est

TEXTPATH=$(MYVAR) \ t xt

CBIPATH=${ M/VAR}\ obj
In the example, TEXTPATH is expanded to ‘ C:\test\txt’ and OBJPATH is expanded
to ‘C:\test\obj'.

From the example above, you can see that you either can use $() or ${}. However,
the variable referenced has to be defined somewhere.

Additionally there are following specia variables allowed too (note that the are
always surrounded by {} and they are case sensitive. Additionally the variable con-
tent contains a the directory separator ‘\' aswell:

» {Compiler}: That is the path of the executable one directory level up. That isif
the executable is ‘ c:\metrowerks\prog\linker.exe', then the variable is
‘c:\metrowerks\’. Note that { Compiler} is used for the assembler too.

« {Project}: Path of the current project file. E.g. if the current project fileis
‘C:\demo\project.ini’, the variable contains * C:\demo\'.

* {System}: Thisisthe path were your Windows system isinstalled, e.g.
‘C\WINNTV".

Global Initialization File (MCUTOOLS.INI) (PC
only)

All tools may store some global data into the file MCUTOOLS. | NI . The tool first
search for thisfile in the directory of the tool itself (path of the executable). If there
isno MCUTOOLS. | NI filein this directory, the tool looks for a MCUTOCLS. | NI
file located in the MSWndows installation directory (e.g. C: \ W NDOWS).

Example

C \ WNDONS\ MUTOCLS. | N
D\ I NSTALL\ PROG MOUTQOLS. | N

If atool isstarted inthe D: \ | NSTALL\ PROG\ DI RECTOY, theinitialization filein
the same directory than thetool isused (D: \ | NSTALL\ PROG MCUTOOLS. | NI).

But if the tool is started outside the D: \ | NSTALL\ PROG directory, the initializa-
tion file in the Windows directory isused (C. \ W NDOAS\ MCUTOOLS. | NI).

The following section gives a short description of the entries in the MCU-
TOOLS. I NI file:

54

Assembler

[Installation] Section

Entry:
Arguments:

Description

Example

Entry:
Arguments:

Description

Example

Path
Last installation path.

Whenever a tool is installed, the instalation script stores the
installation destination directory into this variable.

Pat h=c:\install

Group
Last installation program group.

Whenever a tool is installed, the installation script stores the
installation program group created into this variable.

Group=Assenbl er

[Options] Section

Entry:
Arguments:

Description

Example

DefaultDir
Default Directory to be used.

Specifies the current directory for all tools on a global level (see
also environment variable).

DefaultDi r=c:\install\project

[XXX_Assembler] Section
instead of XXX, the actual backend name appears

Entry:
Arguments:

Description

Entry:

SaveOnExit
1/0

1 if the configuration should be stored when the assembler is
closed, O if it should not be stored. The assembler does not ask to
store aconfiguration in either cases.

SaveAppearance

Assembler

55

Arguments:

Description

Entry:
Arguments:

Description

Entry:
Arguments:

Description

Entry:
Arguments:

Description

Example

1o

1if the visible topics should be stored when writing a project file,
0 if not. The command line, its history, the windows position and
other topics belong to this entry.

This entry corresponds to the state of the check box * Appearance’
inthe' " dialog box.

SaveEditor
1/0

1if the editor settings should be stored when writing a project file,
0 if not. The editor setting contain all information of the editor
configuration dialog box.

This entry corresponds to the state of the check box ‘Editor Con-
figuration’ inthe" " dialog box.

SaveOptions
1/0

1if the options should be contained when writing a project file, 0
if not.

This entry corresponds to the state of the check box ‘Options’ in
the' " dialog box.

RecentProject0, RecentProjectl, ...
names of the last and prior project files

This list is updated when a project is loaded or saved. Its current
content is shown in the file menu.

SaveOnExit =1

SaveAppear ance=1

SaveEdi t or =1

SaveQptions=1

Recent Proj ect 0=C: \ nyprj\project.ini
Recent Proj ect 1=C:\ ot herprj\ proj ect.ini

56

Assembler

[Editor] Section

Entry:
Arguments:

Description

Entry:

Arguments:

Description

Saved:

Entry:
Arguments:

Description

Saved:

Example

Editor Name
The name of the global editor

Specifies the name of the editor used as global editor. This entry
has only a description effect. Its content is not used to start the
editor.

Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Editor_Exe

The name of the executable file of the global editor (including
path).

Specifiesthe file name which is started to edit atext file, when the
global editor setting is active.

Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Editor_Opts
The options to use with the global editor

Specifies options (arguments), which should be used when start-
ing the global editor. If this entry is not present or empty, “%f” is
used. The command line to launch the editor is build by taking the
Editor_Exe content, then appending a space followed by the con-
tent of this entry.

Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

[Edi tor]

edi t or _nane=I DF

edi t or _exe=C: \ nmet rower ks\ prog\i df . exe
editor_opts=% -g%,%

Assembler 57

Example
The following example shows atypical layout of the MCUTOCLS. | NI :

[I'nstallation]
Pat h=c: \ et r ower ks
Q oup=Assenbl er

[Editor]

edi t or _nane=| DF

edi t or _exe=C \ net r over ks\ prog\ i df . exe
editor_opts=% -g%,%

[Options]
Def aul t D r=c: \ nyprj

[XXX_Assenbl er]

SaveExi t =1

SaveAppear ance=1

SaveEdi tor=1

Save(pt i ons=1

Recent Proj ect O=c: \ nyprj\project.ini
Recent Proj ect 1=c: \ ot herprj\project.ini

Local Configuration File (usually project.ini)

The assembler does not change the default.env file in any way. The assembler only
reads the contents. All the configuration properties are stored in the configuration
file. The same configuration file can and isintended to be used by different applica-
tions (assembler, Linker, etc.).

The processor name is encoded into the section name, so that Assembler for differ-
ent processors can use the same file without any overlapping. Different versions of
the same Assembler are using the same entries. This mainly plays a role when
options only available in one version should be stored in the configuration file. In
such situations, two files must be maintained for the different Assembler versions.
If no incompatible options are enabled when the file is last saved, the same file can
be used for both Assembler version.

The current directory is always the directory, where the configuration isin. If acon-
figuration file in a different directory is loaded, then the current directory also
changes. When the current directory changes, also the whole default.env file is
reloaded. Always when a configuration file is loaded or stored, the options in the
environment variable is reloaded and added to the project options.
This behavior has to be noticed when in different directories different default.env

58 Assembler

exist which do contain incompatible options in ASMOPTI ONS. When a project is
loaded using the first default.env, its ASMOPTI ONS are added to the configuration
file. If then this configuration is stored in a different directory, where a default.env
exists with the incompatible options, the assembler adds options and remarks the
inconsistency. Then a message box appears to inform the user that the default.env
options were not added. In such a situation the user can either remove the option
from the configuration file with the advanced option dialog box or he can remove
the option from the default.env with the shell or a text editor depending which
options should be used in the future.

At startup the configuration stored in thefile pr oj ect . i ni located in the current
directory isloaded.

[Editor] Section
Entry: Editor_Name

Arguments: The name of thelocal editor

Description Specifies the name of the editor used as local editor. This entry
has only a description effect. Its content is not used to start the
editor.

This entry has the same format as for the global editor configura-
tioninthencut ool s. i ni file

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Entry: Editor_Exe

Arguments: The name of the executable file of the loca editor (including
path).

Description Specifies file name with is started to edit a text file, when the

local editor setting is active. In the editor configuration dialog
box, the local editor selection is only active when this entry is
present and not empty.

This entry has the same format as for the global editor configura-
tioninthencut ool s. i ni file

Saved: Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

Assembler

59

Entry:
Arguments:

Description

Saved:

Example

Editor_Opts
The options to use with the local editor

Specifies options (arguments), which should be used when start-
ing the local editor. If this entry is not present or empty, “%f” is
used. The command line to launch the editor is build by taking the
Editor_Exe content, then appending a space followed by the con-
tent of this entry.

This entry has the same format as for the global editor configura-
tioninthencut ool s. i ni file

Only with ‘Editor Configuration’ set in the File->Configuration
Save Configuration dialog box.

[Edi tor]

edi t or _nane=| DF

edi t or _exe=C:\ netrowerks\ prog\i df. exe
editor_opts=% -g%,%

[XXX_Assembler] Section
instead of XXX, the actual backend name appears

Entry:
Arguments:

Description

Saved:

Entry:
Arguments:
Description
Saved:

RecentCommandLineX, X= integer
String with a command line history entry, e.g. f i bo. asm

This list of entries contains the content of the command line
history.

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

CurrentCommandLine
String with the command line, e.g. “fibo.asm -w1”
The currently visible command line content.

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

60

Assembler

Entry:
Arguments:

Specid:

Description

Entry:
Arguments:

Specid:

Description

Saved:

Entry:
Arguments:
Specid:
Description

Saved:

StatusbarEnabled
1/0

This entry is only considered at startup. Later load operations do
not use it any more.

Is currently the statusbar enabled state.
1: the statushar is visible
0: the statusbar is hidden

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

ToolbarEnabled
1/0

This entry is only considered at startup. Later load operations do
not use it any more.

I's currently the toolbar enabled state.
1: thetoolbar is visible
0: the toolbar is hidden

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

WindowPos
10 integers, e.g. “0,1,-1,-1,-1,-1,390,107,1103,643"

This entry is only considered at startup. Later load operations do
not use it any more.
Changes of this entry do not show the“*” in the title.

This numbers contain the position and the state of the window
(maximized,..) and other flags.

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

Assembler

61

Entry:

Arguments:

Description
Saved:

Example

Entry:
Arguments:

Description

Saved:

Entry:
Arguments:

Description

Saved:

Entry:
Arguments:
Description
Saved:

WindowFont

size: == 0 -> generic size, < 0 -> font character height, > 0 font
cell height

weight: 400 = normal, 700 = bold (valid vaues are 0..1000)
italic: 0==no, 1 == yes

font name: max. 32 characters.

Font attributes.

Only with Appearance set in the File->Configuration Save Con-
figuration dialog box.

W ndowFont =- 16, 500, 0, Couri er

TipFilePos
any integer, e.g. 236

Actual position in tip of the day file. Used that different tips are
shown at different calls.

Always when saving a configuration file.

ShowTipOfDay
0/1

Should the Tip of the Day dialog box be shown at startup.
1: it should be shown
0: no, only when opened in the help menu

Always when saving a configuration file.

Options
current option string, e.g.: -W2
The currently active option string. This entry can be very long.

Only with Options set in the File->Configuration Save Configura-
tion dialog box.

62 Assembler

Entry: EditorType

Arguments; 0/1/2/3/4

Description This entry specifies which editor configuration is active.
0: global editor configuration (in the file mcutools.ini)
1: locdl editor configuration (the onein thisfile)
2: command line editor configuration, entry EditorCommandLine
3: DDE editor configuration, entries beginning with EditorDDE
4: CodeWarrior with COM. There are no additional entries.
For details see also

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorCommandLine

Arguments; command line, for IDF:. “c:\metrowerks\prog\idf.exe %f -
g%l ,%c"

Description Command line content to open afile. For details see also

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorDDECIientName

Arguments: client commend, e.g. “[open(%f)]”

Description Name of the client for DDE editor configuration. For details see
aso

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

Entry: EditorDDETopicName

Arguments: topic name, e.g. “system”

Description Name of the topic for DDE editor configuration. For details see

aso

Assembler

63

Entry:
Arguments:

Description

Saved:

Example

Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

EditorDDEServiceName
service name, e.g. “ system”

Name of the service for DDE editor configuration. For details see
aso

Only with Editor Configuration set in the File->Configuration
Save Configuration dialog box.

The following example shows a typical layout of the configuration file (usualy

project.ini):
[Editor]

Edi t or _Nane=I DF
Edi t or _Exe=c: \ netr ower ks\ prog\i df . exe
Editor_pts=% -g%,%

[XXX_Assenbl er]

St at usbar Enabl ed=1

Tool bar Enabl ed=1

WndowPos=0, 1,-1,-1, -1, -1, 390, 107, 1103, 643
W ndowFont =- 16, 500, 0, Couri er

Ti pFi | ePos=0

ShowTi pCf Day=1

ot i ons=-wl
Edi t or Type=3

Recent CommandLi neO=f i bo. asm - w2

Recent CommandLi nel=fi bo. asm

Qur r ent CommandLi ne=fi bo. asm - w2

Edi t or DDEQ i ent Narre=[open(%)]

Edi t or DDETopi cNanme=syst em

Edi t or DDESer vi ceNanme=nsdev

Edi t or CoomandLi ne=c: \ met r ower ks\ prog\ i df . exe % -g%, %

Paths

Most environment variables contain path lists telling where to look for files. A path

64 Assembler

listisalist of directory names separated by semicolons following the syntax below:

PathList = DrSpec {";" D rSpec}.
DrSpec = ["*"] D rectoryNane.

Example

CGENPATH=C. \ | NSTALL\ LI B; D \ PRQJIECTS\ TESTS; / usr/ | ocal / met r ower ks/ | i b; /
horne/ ne/ ny_pr oj ect

If a directory name is preceded by an asterisk ("*"), the programs recursively
search that whole directory tree for a file, not just the given directory itself. The
directories are searched in the order they appear in the path list.

Example
LI BPATH=*C \ I NSTALL\ LI B

Note: Some DOSUNIX environment variables (like GENPATH, LIBPATH, etc.)
are used. For further detailsrefer to

We strongly recommend working with the Shell and setting the environment by
means of a DEFAULT. ENV file in your project directory (This 'project dir.' can be
set in the Shell's 'Configure' dialog box). This way, you can have different projects
in different directories, each with its own environment

Note: When starting the assembler from an external editor, do not set the system
environment variable DEFAULTD R If you do so and this variable does not
contain the project directory given in the editor’s project configuration, files
might not be put where you expect them to be put!

Fore some environment variables a synonym also exists. Those synonyms may be
used for older releases of the assembler and will be removed in the future.

Line Continuation
It is possible to specify an environment variable in a environment file (default.env/
.hidefaults) over different lines using the line continuation character ‘\':
Example
ASMOPTI ONS=\
-2\
- WisgNe=10
Thisisthe same as

ASMCPTI ONS=- W2 - WisgNe=10

Assembler 65

But this feature may be dangerous using it together with paths, e.g.

CGENPATH=. \
TEXTH LE=. \ t xt

will resultin
GENPATHE. TEXTFI LE=. \ t xt

To avoid such problems, we recommend to use asemicolon’;’ at the end of apath if
thereisa‘\’ a the end:

GENPATH=. \ ;
TEXTH LE=. \ t xt

Environment Variable Details

The remainder of this section is devoted to describing each of the environment vari-
ables available for the assembler. The environment variables are listed in al phabeti-
cal order and each is divided into several sections.

Topic Description
Tools Lists tools which are using this variable.
Synonym Fore some environment variables a synonym also exists.

Those synonyms may be used for older releases of the assem-
bler and will be removed in the future. A synonym has lower
precedence than the environment variable.

Syntax Secifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default Shows the default setting for the variable or none.

Description _Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the variable where

possible. The examples shows an entry in the
defaul t. env for PC or in the . hi def aul t s for
UNIX.

Seealso Names related sections.

66

Assembler

ABSPATH

ABSPATH: Absolute file Path

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example

See dlso

Compiler, Assembler, Linker, Decoder, Debugger
None

"ABSPATH=" { <path>}.

<path>: Paths separated by semicolons, without spaces.
none.

This environment variableis only relevant when absolute files are
directly generated by the macro assembler instead of object files.
When this environment variable is defined, the assembler will
store the absolute files it produces in the first directory specified
there. If ABSPATH is not set, the generated absolute files will be
stored in the directory the source file was found.

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

none

Assembler

67

ASMOPTIONS

ASMOPTIONS: Default Assembler Options

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
Seeaso

Assembler

None

"ASMOPTIONS=" { <option>}.

<option>: Assembler command line option
none.

If this environment variable is set, the assembler appends its con-
tents to its command line each time afile is assembled. It can be
used to globally specify certain options that should aways be set,
so0 you don't have to specify them each time afile is assembled.

Options enumerated there must be valid assembly options and are
separated by space characters.

ASMOPTIONS=-W2 -L

68

Assembler

COPYRIGHT

COPYRIGHT: Copyright Entry in Object File

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
See also

Compiler, Assembler, Linker, Librarian
none.

"COPYRIGHT=" <copyright>.
<copyright>: copyright entry.

none.

Each object file contains an entry for a copyright string. This
information may be retrieved from the object files using the
decoder.

COPY RIGHT=Copyright
Environment variable

Environment variable

Assembler

69

DEFAULTDIR

DEFAULTDIR: Default Current Directory

Tools:

Synonym:
Syntax:
Arguments:
Default:

Description

Example
Seedso

Compiler, Assembler, Linker, Decoder, Debugger, Librarian,
Maker

none.
"DEFAULTDIR=" <directory>.

<directory>: Directory to be the default current directory.
none.

With this environment variable the default directory for all tools
may be specified. All the tools indicated above will take the direc-
tory specified as their current directory instead the one defined by
the operating system or launching tool (e.g. editor).

Note: Thisisan environment variable on system level (global
environment variable) It cannot be specified in a default
environment file (DEFAULT.ENV/.hidefaults)

DEFAULTDIR=C:\INSTALL\PROJECT
Section
Section

70

Assembler

ENVIRONMENT

ENVIRONMENT: Environment File
Specification

Tools:

Synonym:
Syntax:
Arguments:
Default:

Description

Example

See dlso

Compiler, Assembler, Linker, Decoder, Debugger, Librarian,
Maker

HIENVIRONMENT

"ENVIRONMENT=" <file>.

<file>: file name with path specification, without spaces
none.

This variable has to be specified on system level. Normally the
assembler looks in the current directory for a environment file
named default.env (.hidefaults on UNIX). Using ENVIRON-
MENT (e.g. set in the autoexec.bat (DOS) or .cshrc (UNIX)), a
different file name may be specified.

Note: Thisisan environment variable on system level (global
environment variable) It cannot be specified in a default
environment file (DEFAULT.ENV/.hidefaults).

ENVIRONMENT=\metrowerks\prog\global.env

none.

Assembler

71

ERRORFILE

ERRORFILE: Error File Name Specification

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example

Compiler, Assembler, Linker

none.

"ERRORFILE=" <file name>.

<file name>: File name with possible format specifiers.
EDOUT.

The environment variable ERRORFILE specifies the name for
the error file (used by the Compiler or assembler).

Possible format specifiers are:;
'%n'": Substitute with the file name, without the path.
'%p". Substitute with the path of the sourcefile.

'%f": Substitute with the full file name, i.e. with the path and name
(the same as '%p%on’).

In case of anillegal error file name, a notification box is shown.

ERRCRFI LEEM/Errors. err

lists all errorsinto the file MyErrors.err in the current directory.
ERRCRFI LE=\tnp\errors

lists al errorsinto the file errorsin the directory \tmp.
ERRCRFI LE=% . err

lists all errorsinto afile with the same name as the source file, but
with extension .err, into the same directory as the source file, e.g.
if we compile a file \sources\test.c, an error list file
\sources\test.err will be generated.

ERRCRFI LE=\di r 1\ %. err

for a source file test.c, an error list file \dirl\test.err will be
generated.

72

Assembler

Example

See dlso

ERRCRFI LE=%\ errors. t xt

for a source file \dirl\dir2\test.c, an error list file
\dirl\dir2\errors.txt will be generated.

If the environment variable ERRORFILE is not set, errors are
written to the default error file. The default error file name
depends on the way the assembler is started.

If afile name is provided on the assembler command line, the
errors are written to the file EDOUT in the project directory.

If no file name is provided on the assembler command line, the
errors are written to the file ERR.TXT in the project directory.

Another example shows the usage of this variable to support cor-
rect error feedback with the WinEdit Editor which looks for an
error file called EDOUT:

Installation directory: E\INSTALL\ PROG
Proj ect sources: D\SRC
Common Sources for projects: E\CLIB

Entry in default.env (D \SRQ DEFAULT. ENV) :
ERRCRFI LE=E: \ | NSTALL\ PROG EDOUT

Entry in WNEDIT.IN (in Wndows directory):
QUTPUT=E: \ | NSTALL\ PROG EDQUT

Note: Be careful to set thisvariable if the WinEdit Editor is use,
else the editor cannot find the EDOUT file

none.

Assembler

73

GENPATH

GENPATH: Search Path for Input File

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
Seedso

Compiler, Assembler, Linker, Decoder, Debugger
HIPATH

"GENPATH=" { <path>}.

<path>: Paths separated by semicolons, without spaces.
none.

The macro assembler will look for the sources and included files
first in the project directory, then in the directories listed in the
environment variable GENPATH

Note: If a directory specification in this environment variables
startswith an asterisk (“* "), the whole directory treeis
searched recursive depth first, i.e. all subdirectories and
their subdirectories and so on are searched, too. Within
one level in thetree, search order of the subdirectoriesis
indeterminate (these is not valid for Win32).

GENPATH=\sources\include;..\..\headers;\usr\local\lib

none.

74

Assembler

INCLUDETIME

INCLUDETIME: Creation Time in Object File

Tools:
Synonym:
Syntax:

Arguments:

Default:

Description

Example
See dso

Compiler, Assembler, Linker, Librarian

none.

"INCLUDETIME=" ("ON" | "OFF").

"ON": Include time information into object file.

"OFF": Do not include time information into object file.
"ON"

Normally each object file created contains atime stamp indicating
the creation time and data as strings. So whenever a new file is
created by one of the tools, the new file gets a new time stamp
entry.

This behavior may be undesired if for SQA reasons a binary file
compare has to be performed. Even if the information in two
object filesis the same, the files do not match exactly because the
time stamps are not the same. To avoid such problems this vari-
able may be set to OFF. In this case the time stamp strings in the
object file for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using the
decoder.

INCLUDETIME=0OFF
Environment variable

Environment variable

Assembler

75

OBJPATH

OBJPATH: Object File Path

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
Seedso

Compiler, Assembler, Linker, Decoder

None

"OBJPATH=" {<path>}.

<path>: Paths separated by semicolons, without spaces.
none.

This environment variable is only relevant when object files are
generated by the macro assembler. When this environment vari-
ableis defined, the assembler will store the object filesit produces
in the first directory specified there. If OBJPATH is not set, the
generated object fileswill be stored in the directory the sourcefile
was found.

OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

none.

76

Assembler

SRECORD

SRECORD: S Record Type

Tools:

Synonym:
Syntax:

Arguments:

Default:

Description

Example
See also

Assembler, Linker, Burner
None
"SRECORD=" <RecordType>.

<Record Type>: Force the type for the Motorola S record which
must be generated. This parameter may take the value ‘S1’, ‘' S2’
or‘S3.

none.

This environment variable is only relevant when absolute files are
directly generated by the macro assembler instead of object files.
When this environment variable is defined, the assembler will
generate a Motorola S file containing records from the specified
type (S1 records when Sl is specified, S2 records when S2 is
specified and S3 records when S3 is specified).

Note: If the environment variable SRECORD is set, it isthe user
responsibility to specify the appropriate Srecord type. If
you specifies S1 while your code isloaded above OxFFFF,
the Motorola Sfile generated will not be correct, because
the addresses will all be truncated to 2 bytes values.

When this variable is not set, the type of S record generated will
depend on the size if the address, which must be loaded there. If
the address can be coded on 2 bytes, a S1 record is generated. If
the address is coded on 3 bytes, a S2 record is generated. Other-
wise a S3 record is generated.

SRECORD=S2

none

Assembler

4

TEXTPATH

TEXTPATH: Text File Path

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
See also

Compiler, Assembler, Linker, Decoder

none.

"TEXTPATH=" { <path>}.

<path>: Paths separated by semicolons, without spaces.
none.

When this environment variable is defined, the assembler will
store the listing files it produces in the first directory specified
there. If TEXTPATH is not set, the generated listing files will be
stored in the directory the source file was found.

TEXTPATH=\sources\txt;..\..\headers;\usr\l ocal \txt

none.

78

Assembler

TMP

TMP: Temporary directory

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example

See dso

Compiler, Assembler, Linker, Debugger, Librarian
none.

"TMP=" <directory>.

<directory>: Directory to be used for temporary files.
none.

If atemporary file has to be created, normally the ANSI function
tmpnam() is used. This library function stores the temporary files
created in the directory specified by this environment variable. If
the variable is empty or does not exist, the current directory is
used. Check thisvariable if you get an error message “ Cannot cre-
ate temporary file”.

Note: Thisis an environment variable on system level (global
environment variable) It CANNOT be specified in a
default environment file (DEFAULT.ENV/.hidefaults).

TMP=C\TEMP
Section

Assembler

79

USERNAME

USERNAME: User Name in Object File

Tools:
Synonym:
Syntax:
Arguments:
Default:

Description

Example
Seealso

Compiler, Assembler, Linker, Librarian
none.

"USERNAME=" <user>.

<user>: Name of user.

none.

Each object file contains an entry identifying the user who created
the object file. This information may be retrieved from the object
files using the decoder.

USERNAME=PowerUser
Environment variable

Environment variable

80

Assembler

Assembler 81

Files

Input Files

Source Files

The macro assembler takes any file as input, it does not require the file name to
have a special extension. However, we suggest that all your source file names have
extension . asm and al included files extension . i nc. Source files will be
searched first in the project directory and then in the directories enumerated in

Include File

The search for include files is governed by the environment variable

Include files are searched for first in the project directory, then in the directories
given in the environment variable GENPATH The project directory is set via the
Shell, the Program Manager or the environment variable

Output Files

Object Files

After successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. Thisfile is writ-
ten to the directory given in the environment variable . If that variable
contains more than one path, the object file is written in the first directory given; if
thisvariable isnot set at all, the object file is written in the directory the source file
was found. Object files always get the extension . o.

Absolute Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object
file. This file is written to the directory given in the environment variable

. If that variable contains more than one path, the absolute file is written in the
first directory given; if thisvariableis not set at all, the absolute file iswritten in the

82 Assembler

directory the source file was found. Absolute files dways get the extension . abs.

Motorola S Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an
object file. In that case a Motorola S record file is generated at the same time. This
file can be burnt into an EPROM. It contains information stored in al the
READ_ONLY sections in the application. The extension for the generated Motor-
ola Srecord file depends on the setting from the variable

« |f SRECORD = S1, the Motorola Srecord file gets the extension . s1.
* |f SRECORD = S2, the Motorola Srecord file gets the extension . s2.
« |f SRECORD = S3, the Motorola Srecord file gets the extension . s3.

« |f SRECORD is not set, the Motorola S record file gets the extension . sx.
This file is written to the directory given in the environment variable ABSPATH. |If
that variable contains more than one path, the S record file is written in the first

directory given; if this variable is not set at al, the S record file is written in the
directory the source file was found.

Listing Files

After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This

file is dways generated, when the is activated (even when the macro
assembler generates directly an absolute file). This file is written to the directory
given in the environment variable . If that variable contains more than

one path, the listing file is written in the first directory given,; if this variable is not
set at al, thelisting file is written in the directory the source file was found. Listing
files always get the extension . | st. The format of the listing file is described in
the chapter. Thisfileis only generated when the is
activated.

Debug Listing Files

After successful assembling session, the Macro Assembler generates adebug listing
file, which will be used to debug the application. Thisfileis always generated, even
when the macro assembler generates directly an absolute file. The debug listing file
is a duplicate from the source, where all the macros are expanded and the include
files merged. This file is written to the directory given in the environment variable

Assembler 83

. If that variable contains more than one path, the debug listing file is
written in the first directory given; if this variableis not set at all, the debug listing
file is written in the directory the source file was found. Debug listing files always
get the extension . dbg.

Error Listing File

If the Macro Assembler detects any errors, it does not create an object file but an
error listing file. This file is generated in the directory the source file was found
(also see , Environment Variable).

If the assembler’s window is open, it displays the full path of all include files read.
After successful assembling the number of code bytes generated is displayed, too.
In case of error, the position and file name where the error occursis displayed in the
assembler window.

If the assembler is started from the IDF (with '% ' given on the command line) or
Codewright (with "% %" given on the command line), this error file is not pro-
duced. Instead it writes the error messages in a special format in a file called
EDOUT using the Microsoft format by default. Use WInEdit’s Next Error or Code-
Wright's Find Next Error command to see both error positions and the error mes-

Ssages.

Interactive Mode (Assembler window open)

If ERRORFI LE is set, the assembler creates a message file named as specified in
this environment variable.

If ERRORFI LEisnot set, adefault file named ERR. TXT is generated in the current
directory.
Batch Mode (Assembler window not open)

If ERRORFI LE is set, the assembler creates a message file named as specified in
this environment variable.

If ERRORFI LE is not set, a default file named EDOUT is generated in the current
directory.

Assembler

.0
.dbg

1. current dir inc 1. current dir
2. GENPATH 2. GENPATH
Assembler
ERRORFILE
1. OBJPATH Ist | 1. TEXTPATH ERR.TXT
2. Source file 2. Source file or
path path EDOUT
1. ABSPATH
2. Source file

path

Assembler 85

Assembler Options

The assembler offers a number of Assembler options that you can use to control the
assembler’s operation. Options are composed of a minus/dash (*-') followed by one
or more letters or digits. Anything not starting with a dash/minus is supposed to be
the name of a source file to be assembled. Assembler options may be specified on
the command line or in the environment variable. Typically, each
Assembler option is specified only once per assembling session.

Command line options are not case sensitive, e.g. "-Li " isthesameas"- i ". Itis
possible to coalescing options in the same group, i.e. one might also write "—Lci "
instead of "—Lc —Li ". However such a usage is not recommended as it make the
command line less readable and it does also create the danger of name conflicts. For
example"-Li —Lc" isnot the sameas"—Li c" because thisisrecognized as a sepa-
rate, independent option on its own.

Note: It isnot possibleto coalesce options in different groups, e.g. "-Lc “\W."
cannot be abbreviated by the terms"-LC1" or "-LCWL".

ASMOPTI ONS If this environment variable is set, the assembler
appends its contents to its command line each time a
file is assembled. It can be used to globally specify
certain options that should always be set, so you
don't have to specify them each time a file is assem-
bled.

Assembler options are grouped by:
HOST, OUTPUT, INPUT, TARGET and VARIOUS.

Group Description

HOST Lists options related to the host.

OUTPUT Lists options related to the output files generation (which kind
of file should be generated).

INPUT Lists options related to the input files.

CODE Lists options related to code generation (memory models, ...).

MESSAGES Lists options controlling the generation of error messages.

VARIOUS Lists various options.

86

Assembler

The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope:

Scope Description

Application The option has to be set for all files (Assembly Units) of an
application. A typical example is an option to set the memory
model. Mixing object fileswill have unpredictable results.

Assembly Unit This option can be set for each assembling unit for an appli-
cation differently. Mixing objectsin an application is possible.

None The option scope is not related to a specific code part. A typi-

cal example are options for the message management.

The options available are arranged into different groups, and a sheet is available for
each of these groups. The content of the list box depends on the selected sheets.

Assembler Option Details

The remainder of this section is devoted to describing each of the assembler options
available for the assembler. The options are listed in alphabetical order and each is
divided into severa sections.

Topic Description

Group HOST, OUTPUT, INPUT, CODE, LANGUAGE, MESSAGE
or VARIOUS.

Scope Application, Assembly Unit, Function or None.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description

Provides a detailed description of the option and how to use
it.

Assembler

87

Topic

Description

Example

Seealso

Gives an example of usage, and effects of the option where
possible. Assembler settings, source code and/or Linker PRM
files are displayed where applicable. The examples shows an
entry in the def aul t . env for PC or in the . hi de-

f aul t s for UNIX.

Names related options.

Using Special Modifiers

With some options, it is possible to use special modifiers. However, some modifiers
may not make sense for all options. This section describes those modifiers.

The following modifiers are supported:

Modifier Description

%p Path including file separator

%N File namein strict 8.3 format

%n File name without extension

%E Extension in strict 8.3 format

Y%e Extension

%f Path + file name without extension

%" A don_JbIe quote () if the file name, the path or the extension
contains a space

%' A single quote (*) if the file name, the path or the extension
contains a space

%(ENV) Replaces it with the contents of an environment variable

%% Generatesasingle ‘%'

Examples:

For your examples it is assumed that the actua file name (base file name for the

modifiers) is:

c:\ Metrower ks\ ny deno\ TheWiol eThi ng. nyExt

88 Assembler

%p gives the path only with afile separator:
c:\ Metrower ks\ ny deno\

%N resultsin the file name in 8.3 format, that is the name with only 8 characters:
TheWhol e

%n returns just the file name without extension:
TheWhol eThi ng

%E gives the extension in 8.3 format, that is the extension with only 3 characters:
nyE

%e is used for the whole extension:
nyExt

%f gives the path plus the file name:
c:\ Met rower ks\ ny deno\ TheWol eThi ng

Because the path contains a space, using %" or %’ is recommended: Thus %" %f%"
gives:

“c:\ Met rower ks\ ny deno\ TheWol eThi ng”
where %’ %f%’ gives:
‘c:\ Met rower ks\ ny dero\ TheWiol eThi ng’

Using %(envVariable) an environment variable may be used. A file separator fol-
lowing after % (envVariable) is ignored if the environment variable is empty or
does not exist. In other words, the $(TEXTPATH)\myfile.txt is replaced with

c:\ Metrowerks\txt\nyfile.txt
if TEXTPATH is set to
TEXTPATH=cC: \ Met r ower ks\ t xt
Butisset to
nyfile.txt
if TEXTPATH is does not exist or is empty.
A %% may be used to print a percent sign.The %e%% gives:
nyExt %

Assembler

89

List of all Options

-C=SAvocet
-Ci
-Compat
-CPU

-D

-Env

-F

-H

-l

-L

-LasmC
-Lc

-Ld

-Le

-Li

-Lic

-LicA
-MacroNest
-M
-MCUasm
-N
-NoBeep
-NoDebuglinfo
-NoEnv
-ObjN
-Struct

-V

-View

-w1

-W2
-WErrFile
-WMsg8x3
-WmsgFb
-WmsgFi
-WmsgFob
-WmsgFoi
-WmsgFonf
-WmsgFonp

Semi Avocet Compatibility

Switch Case Sensitivity on Label Names OFF
Compatibility Modes

CPU Derivative

Define Label

Set Environment Variable

Output File Format Specification
Short Help

Include File Path

Generate aListing File

Configure the Listing File

No Macro Cadl in Listing File

No Macro Definition in Listing File
No Macro Expansion in Listing File
No Included Filein Listing File
License Information

License Information about every Feature in Directory

Configure Maximum Macro Nesting
Memory Model

Switch Compatibility with MCUasm On
Display Notify Box

No Beep in Case of an Error

No debug info for ELF/Dwarf files

Do not use Environment

Object File Name Specification

Support for Structured Types

Prints Assembler Version Number
Application Standard Occurrence

No Information Messages

No Information and Warning M essages
Create “err.log” Error File

Cut File Names in Microsoft Format to 8.3
Set Message File Format for Batch Mode
Set Message File Format for Interactive Mode
Message Format for Batch Mode

Message Format for Interactive Mode

M essage Format for no File Information
Message Format for no Position Information

90

Assembler

-WmsgNe
-WmsgNi
-WmsgNu
-WmsgNw
-WmsgSd
-WmsgSe
-WmsgSi
-WmsgSw
-WOutFile
-WStdout

Number of Error Messages
Number of Information Messages
Disable User Messages

Number of Warning Messages
Setting a Message to Disable
Setting a Message to Error
Setting a Message to Information
Setting a Message to Warning
Create Error Listing File

Write to Standard Output

Assembler

91

-C=SAvocet

-C=SAvocet: Switch Semi-Compatibility with
Avocet Assembler ON

Group:
Scope:
Syntax:
Arguments:
Defaullt:

Description:

Example:
See also:

VARIOUS
Assembly Unit
"-C=SAvocet".
none

none.

This switches ON compatibility mode with the Avocet Assembler.
Additional features supported, when this option is activated are
enumerated in section “ Semi-Avocet Compatibility”.

ASMOPTI ONS=- C=SAvocet
Chapter “

92

Assembler

-Ci

-Ci: Switch Case Sensitivity on Label Names

OFF

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

See dso

INPUT
Assembly Unit
"-Ci".

none

none.

This switches case sensitivity on label names off. When this
option is activated, the assembler do not care about case sensitiv-
ity for label name.

If the assembler generates object files and not directly absolute
files (), then the case of exported/imported labels
must still match. Or the option -Ci should be specified in the
linker as well.

When case sensitivity on label names is switched off, the assem-
bler will not generate any error message for following code:

CRG $200
entry: NCP
BRA Entry
The instruction ‘BRA Entry’ will branch on the label ‘entry’.
Per default, the assembler is case sensitive. For the assembler the
labels ‘Entry’ and ‘entry’ are two distinct labels.

Assembler

93

-CMacAngBrack

-CMacAngBrack: Angle brackets for Macro
Arguments Grouping

Group:
Scope:
Syntax:
Arguments:
Defaullt:

Description:

See adlso:

LANGUAGE

Application

"-CMacAngBrack" ("ON" | "OFF").
"ON" or "OFF".

none.

This option control whether the < > syntax for macro invocation
argument grouping is available. When it is disabled, the assem-
bler does not recognize the special meaning for < in the macro
invocation context. There are cases where the angle brackets are
ambiguous. New code should use the [? 7] syntax instead.

94

Assembler

-CMacBrackets

-CMacBrackets: Square brackets for Macro
Arguments Grouping

Group:
Scope:
Syntax:
Arguments:
Defaullt:

Description:

See also:

LANGUAGE

Application

"-CMacBrackets' ("ON" | "OFF").
"ON" or "OFF".

"ON".

This option control whether the [? 7] syntax for macro invocation
argument grouping is available. When it is disabled, the assem-
bler does not recognize the special meaning for [? in the macro
invocation context.

Assembler

95

-Compat

-Compat: Compatibility Modes

Group:
Scope:
Syntax:
Arguments:
Default:

Description:

LANGUAGE

Application

"-Compat" ["="{"I" |"="]"c"|"s" | "f" |"$" |"a" | "b"}.
see below.

none.

This option control some compatibility enhancements of the
assembler. The god is not to provide 100% compatibility with
any other assembler, but to make it possible to reuse as much as
possible. The various suboptions do control different parts of the
assembly:

"=": Operator != means equal

The assembler takes the != operator by default as not equal, as it
is in the C language. For compatibility, this behavior can be
changed to equal with this option. Because the danger of this
option for existing code, a message isissued for every '= whichis
treated as equal .

: Support additional ! operators
Thefollowing additional operators are defined when this optionis
present:

"IN exponentiation

"Im": modulo

"1@": signed greater or equal

"1g": signed greater

"1%": signed less or equal

"It": signed less than

"1$": unsigned greater or equal
"IS": unsigned greater

"1&": unsigned less or equal

"II": unsigned less

"In": one complement

"lw": low operator

"Ih": high operator

96

Assembler

Note that the following ! operators are defined by default:
"1.": binary and

"Ix": Exclusive or

"I+": binary or

"c": Alternate comment rules

With this suboption, comments do implicitly start when aspaceis
present after the argument list. A special character is not neces-
sary. Be careful with spaces when this option is given as part of
the intended arguments may be taken as comment. However, to
avoid accidental comments, the assembler does issue awarning if
such acomment does not start witha"*" or a";".

Example: Comments starting with a*

NCP * Wth -Conpat =c, conments
* can start with a *
Example: Implicit comment start after a space
With -Compat=c, "+ 1" is taken as comment. A warning is issued

because the "comment" does not start with a";" or a"*".

DCB1+1, 1
DC B 1+1,1

With -Compat=C, this code generates a warning and the 3 bytes
1,2,1. Without it, this code generates the 4 bytes 2,1,2,1.

"s": Symbol prefixes

With this suboption, so compatibility prefixes for symbols are
supported. With this option, the assembler does accept “pgz:” and
“byte:” prefixed for symbolsin XDEF's and XREF's. They corre-
spond to a XREF.B or XDEF.B with the same symbol without the
prefix.

"f": Ignore FF character at line start
With this suboption, an otherwise a illegal character recognized
from feed character isignored.

"$": Support $ character in symbols
With this suboption, the assembler supports to start identifiers
with a$ sign.

"a": Add some additional directives
With this suboption, some additional directives are added for an
enhanced compatibility.

Assembler

97

See adlso:

The assembler does actually support a SECT directive as dias of
the usual SECTION directive. The SECT directive takes the sec-
tion name as first argument.

"b": support FOR directive

With this suboption, the assembler does support a

to generate repeated patterns more easily without having to use
recursive macros.

98

Assembler

-CPUHC12, -CPUStar12

-CPU: Derivative

Group:
Scope:
Syntax:
Arguments:
Default:

Description:

Example:

Note:

See also:

CODE

Application

"-CPU" {"HC12"|"Star12"}.
none

none.

This option controls whether code for a HC12 or for a Starl2
should be produced. Because the instruction set of the two CPUs
is very similar, this option does only affect PCR relative MOV B/
MOVW ingtructions. In HC12 or default mode, the assembler
does adapt the offsets according to the CPU12 Reference Manual,
paragraph 3.9.1 Move Instructions. In Star12 mode it does not.

Consider the following code:

One: OC 1
Copyne: MOVB One, PCR $1000

By default, or with -CPUHC12, the assembler generates:

000000 01 One: DC 1
000001 180D DC10 Copyne: MOVB (ne, PCR $1000
003005 00

With the option -CPUStar12, the assembler generates:

003000 01 One: DC 1
003001 180D DA10 Copyne: MOVB (ne, PCR $1000
003005 00

The differenceis that for the HC12, the assembler adapts the off-
set to One according to the MOVB IDX/EXT case by -2, so the

resulting code is $DC for the IDX encoding. For Star12, this is
not done, and the IDX encodes as $DA.

PC relative MOVB/MOVW ingtructions (eg. “MOVB
1,PC,2,PC") are not adapted. Only PCR relative move instruc-
tions (MOVB 1,PCR,2,PCR) are adapted.

CPU12 Reference Manual, paragraph 3.9.1 Move Instructions

Assembler

99

-D

-D: Define Label

Group:
Scope:
Syntax:

Arguments:

Default:

Description

Example

INPUT
Assembly Unit
"-D" <LabelName> ["=" <Value>].

<LabelName>: Name of label.
<Vaue>: Value for label. 0 if not present.

0 for the Value.

This option behaves as if a“Label: EQU Value’ would be at the
start of the main source file. When no explicit valueis given, O is
used as default.

This option can be used to build different versions with one com-
mon source file.

Conditional inclusion of a copyright notice:
Source file:

Year AsString: MACRO
DC. B $30+(\ 1 /1000) %40
DC B $30+(\1 / 100)°%d0
DC B $30+(\1 / 10)%o0
DC B $30+(\1 / 1) %0
ENDM

i fdef ADD OCPYR GHT
CRG $1000
DC B "Copyright by "
DC. B "John Doe"
i fdef YEAR
DC.B " 1999-"
Year AsString YEAR
endi f
DCBO
endi f

When assembled with the options "-dADD_COPYRIGHT -
dYEAR=2001", the following listing is generated:

1 1 Year AsString: MCORO

100

Assembler

QOWwoo~NOUA~WN

=

11

12
13

14
15
16
17
18
19
20
21

See dlso none.

0000

a001000 436F
001004 7269
001008 7420
00100C 20
11 a00100D 4A6F
001011 2044
12 0000
13 a001015 2031
001019 392D
14
2m a00101B 32
3m a00101C 30
4m a00101D 30
5m a00101E 31
15
16 a00101F 00
17

0001

7079
6768
6279

686E
6F65
0001
3939

+ + + +

DC. B $30+(\ 1 /1000) %40

DC. B $30+(\1 / 100) %0

DC. B $30+(\1 / 10)%0

DC. B $30+(\1 / 1)%0
ENDM

i fdef ADD OCPYR GHT
CRG $1000
DC. B "Copyright by "

DC. B "John Doe"

i fdef YEAR
DC B " 1999-"

Year AsString YEAR
DC. B $30+(YEAR / 1000) %40
DC. B $30+(YEAR / 100) %40
DC B $30+(YEAR / 10) %0
DC. B $30+(YEAR / 1) %0
endi f
DC.B O
endi f

Assembler

101

-Env

-Env: Set Environment Variable

Group:
Scope:
Syntax:

Arguments:

Default:
Description

Example

Seedso

HOST
Assembly Unit
"-Env" <EnvironmentVariable> "=" <VariableSetting>.

<EnvironmentVariable>: Environment variable to be set
<VariableSetting>: Setting of the environment variable

none.

This option sets an environment variable.
ASMOPTI ONS=- EnvOBJPATH=\ sour ces\ obj
Thisis the same as

OBJPATH=\ sour ces\ obj

in the default.env.

102

Assembler

-F (-Fh, -F20, -FA20, -F2, -FA2)

-F: Output File Format

Group:
Scope:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

OUTPUT

Application

"-F("h" | "20"| "A20" | "2"| "A2").

"h": HIWARE object file format, thisis the default

"20": Compatible ELF/DWARF 2.0 object file format

"A20": Compatible ELF/DWARF 2.0 absolute file format

"2": ELF/DWARF 2.0 object file format

"A2": ELF/DWAREF 2.0 absolute file format

-F2

Define the format for the output file generated by the assembler.

With the option -Fh set, the assembler uses an object file format
which is proprietary of HIWARE.

With the options -F2 set, the assembler produces an ELF/DWARF
object file. This object file formats may aso be supported by
other Compiler or Assembler vendors.

With the options -FA2 set, the assembler produces an ELF/
DWARF absolute file. Thisfile formats may also be supported by
other Compiler or Assembler vendors.

Note that the ELF/DWARF 2.0 files format has been updated in
the current version of the assembler. If you are using HI-WAVE
version 5.2 (or an earliest version), -F20 or -FA20 must be used to
generate ELF/DWARF 2.0 object files which can be loaded in the
debugger.

ASMOPTIONS=-F2

none.

Assembler

103

-H

-H: Short Help
Group: VARIOUS
Scope: None
Syntax: "-H".
Arguments: none.
Default: none.
Description The -H option causes the assembl er to display ashort list (i.e. help

Example

Seedso

list) of available options within the assembler window. Options
are grouped into HOST, OUTPUT, INPUT, MESSAGE, CODE
and VARIOUS.

No other option or source files should be specified when the -H
option isinvoked.

You find below a portion of the list produced by the option - H:

MESSAGE:

-N Show notification box in case of errors
-NoBeep No beep in case of an error

-W Don't print | NFORVATI ON nessages

-\ Don't print | NFCRVATION or WARN NG nessages

-VWErrFile Oeate "err.log" Error File

none.

104 Assembler

-I: Include File Path

Group: INPUT

Scope: None

Syntax: "-|"<path>.

Arguments: <path>: File path to be used for includes.
Default: none.

Description With the option -1 it is possible to specify a file path used for
includefiles.

Example -1d:\mySources\include
Seeadso none.

Assembler 105

-L

-L: Generate a Listing File

Group: OUTPUT
Scope: Assembly unit
Syntax: "L ["=" <dest>]
Arguments: <dest>: the name of the listing file to be generated.
It may contain special modifiers (see).
Default: no listing file generated.

Description Switches on the generation of the listing file. If dest is not speci-
fied, the listing file will have the same name as the sourcefile, but
with extension . | st . Thelisting file contains macro definition,
invocation and expansion lines aswell as expanded include files.

Example: ASMOPTI ONS=- L

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -L is specified, following portion of code

XDEF Start
MData: SECTICON
char 1: DS.B 1
char 2: DS.B 1
I NCLUDE " nacro. i nc"
CodeSec: SECTI N
Start:
cpChar charl, char2
NCP

With the following include file macro.inc

cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

generates the following output in the assembly listing file:

Abs. Rel. Loc Cbj . code Source line

106 Assembler
1 1 XDEF Start
2 2 M/Dat a: SECTI ON
3 3 000000 char1: DS.B 1
4 4 000001 char 2: DS.B 1
5 5 I NCLUDE "nacro. i nc"
6 1i cpChar: MACRO
7 2i LDAA \ 1
8 3i STAA \ 2
9 4 ENDM
10 6 CodeSec: SECTICN
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 B6 xxxx + LDAA charl
14 3m 000003 7A XXXX + STAA char 2
15 9 000006 A7 NCP

See dso

Content of included files, as well as macro definition, invocation
and expansion is stored in the listing file.

For a detailed description of the listing file, see the
chapter.

Assembler 107

-Lasmc

-Lasmc: Configure Listing File

Group: OUTPUT
Scope: Assembly unit
Syntax: "-Lasme™ "="[{"s" | "rt [tmt T UK et | Ay

Do not write the source line

Do not write the relative line (Rel.)
Do not write the macro mark

Do not write the address (L oc)

Do not write the location kind

Do not write the include mark column
Do not write the object code

Do not write the absolute line (Abs.)

Arguments:

QO TXxTION

Default: Write all columns.

Description The listing file shows by default a lot of information. With this
option, the output can be reduced to columns which are of inter-
rest. This option configures which columns are printed in alisting
file. To configure which lines to print, see the options

, and

Example: For the following file:

DC. B "Hello Wrld"
DC. B O

The assembler generates by default thislisting file:

1 1 000000 4865 6GC DC. B "Hello Vrld"
000004 6F20 576F
000008 726C 64

2 2 00000B 00 DC B O

In order to get this output without the source file line numbers and
other irrelevant parts for this simple DC.B example, the following
option isadded "- Lasnc=r anki ", this generates:

108 Assembler

000000 4865 6G6C DC. B "Hello Wrld"
000004 6F20 576F

000008 726C 64

00000B 00 DC B O

For a detailed description of the listing file, see the Listing File
chapter.

See also Option -L
Option -Lc
Option -Ld
Option -Le
Option -Li
Listing File chapter

Assembler

109

-Lc

-Lc: No Macro Call in Listing File

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example:

OUTPUT
Assembly unit
h o

none.

none.

Switches on the generation of the listing file, but macro invoca-
tions are not present in the listing file. The listing file contains
macro definition and expansion lines as well as expanded include
files.

ASMOPTI ONS=- Lc

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Lc is specified, following portion of code

XDEF Start
MData: SECTION
char 1: DS.B 1
char 2: DS.B 1
| NOLUDE " nmacro. i nc"
CodeSec: SECTICN
Start:
cpChar charl, char2
NCP

With the include file macro.inc:

cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

generates the following output in the assembly listing file:
Abs. Rel. Loc oj. code Source line

110 Assembler
2 2 M/Dat a: SECTI ON
3 3 000000 char1: DS.B 1
4 4 000001 char 2: DS.B 1
5 5 I NCLUDE "nacro. i nc"
6 1i cpChar: MACRO
7 2i LDAA \ 1
8 3i STAA \ 2
9 4 ENDM
10 6 CodeSec: SECTICN
11 7 Start:
13 2m 000000 B6 xxxx + LDAA char1l
14 3m 000003 7A XXXX + STAA char 2
15 9 000006 A7 NCP

See dso

Content of included files, as well as macro definition and expan-
sion isstored in thelisting file.

The source line containing the invocation of the macro is not
present in the listing file.

For a detailed description of the listing file, see the
chapter.

Assembler

m

-Ld

-Ld: No Macro Definition in Listing File

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example:

OUTPUT
Assembly unit
"L g

none.

none.

Switches on the generation of the listing file, but macro defini-
tions are not present in the listing file. The listing file contains
macro invocation and expansion lines as well as expanded include
files.

ASMOPTI ONS=- Ld

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Ld is specified, following portion of code

XDEF Start
MData: SECTION
char 1: DS.B 1
char 2: DS.B 1
| NOLUDE " nmacro. i nc"
CodeSec: SECTICN
Start:
cpChar charl, char2
NCP

With the include file macro.inc:

cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

generates the following output in the assembly listing file:

Abs. Rel. Loc Cbj . code Source line

112

Assembler

See dso

1 1 XDEF Start
2 2 M/Dat a: SECTI ON
3 3 000000 char 1: DS.B 1
4 4 000001 char 2: DS.B 1
5 5 I NCLUDE "nmacro. i nc"
6 1i cpChar: MACRO
10 6 CodeSec: SECTI CN
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 B6 xxxx + LDAA charl
14 3m 000003 7A xxxx + STAA char 2
15 9 000006 A7 NCP

Content of included files, as well as macro invocation and expan-
sion is stored in the listing file.

The source code from the macro definition is not present in the
listing file.

For a detailed description of the listing file, see the
chapter.

Assembler

113

-Le

-Le: No Macro Expansion in Listing File

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example:

OUTPUT
Assembly unit
" e

none.

none.

Switches on the generation of the listing file, but macro expan-
sions are not present in the listing file. The listing file contains
macro definition and invocation lines as well as expanded include
files.

ASMOPTI ONS=- Le

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Leis specified, following portion of code

XDEF Start
MData: SECTION
char 1: DS.B 1
char 2: DS.B 1
| NOLUDE " nmacro. i nc"
CodeSec: SECTICN
Start:
cpChar charl, char2
NCP

With the include file macro.inc:

cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

generates the following output in the assembly listing file:

Abs. Rel. Loc Cbj . code Source line

114 Assembler
1 1 XDEF Start
2 2 M/Data: SECTION
3 3 000000 char 1: DS.B 1
4 4 000001 char 2: DS.B 1
5 5 I NCLUDE "nmacro. i nc"
6 1i cpChar: MACRO
7 2i LDAA \ 1
8 3i STAA \ 2
9 4i ENDM
10 6 CodeSec: SECTICN
11 7 Start:
12 8 cpChar charl, char?2
15 9 000006 A7 NCP

See dso

Content of included files, as well as macro definition and invoca-
tion are stored in the listing file.

The macro expansion lines are not present in the listing file.

For a detailed description of the listing file, see the
chapter.

Assembler

115

-Li

-Li: No included File in Listing File

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example:

OUTPUT
Assembly unit
n

none.

none.

Switches on the generation of the listing file, but include files are
not expanded in the listing file. The listing file contains macro
definition, invocation and expansion lines.

ASMOPTI ONS=- Li

In the following example of assembly code, the macro cpChar
accept two parameters. The macro copies the value of the first
parameter to the second one.

When option -Li is specified, following portion of code

XDEF Start
MData: SECTICON
char 1: DS.B 1
char 2: DS.B 1
| NOLUDE " nmacro. i nc"
CodeSec: SECTICN
Start:
cpChar charl, char2
NCP

With the include file macro.inc:

cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

generates the following output in the assembly listing file:
Abs. Rel. Loc oj. code Source line

1 1 XDEF Start
2 2 M/Data: SECTION

116

Assembler

See dso

3 3 000000 char1: DS.B 1

4 4 000001 char 2: DS.B 1

5 5 | NCLUDE "nmacro. i nc"
10 6 CodeSec: SECTICN

11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 B6 xxxx + LDAA charl

14 3m 000003 7A XXXX + STAA char2

15 9 000006 A7 NCP

Macro definition, invocation and expansion is stored in the listing
file.

The content of included file is not present in the listing file.

For a detailed description of the listing file, see the
chapter.

Assembler

117

-Lic

-Lic: License Information

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See also

VARIOUS
None
"-Lic".
none.
none.

The -Lic option prints the current license information (e.g. if itis
a demo version or a full version). This information is aso dis-
played in the about box.

ASMOPTI ONS=- Li ¢

118

Assembler

-LicA

-LicA: License Information about every
Feature in Directory

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

See dso

VARIOUS
None
"-LicA".
none.
none.

The -LicA option prints the license information of every tool or
DLL in the directory where the executable is (e.g. if tool or fea
tureisademo version or afull version). Because the option has to
anayze every single file in the directory, this may take a long
time.

ASMOPTI ONS=- Li cA

Assembler

119

‘M (-Ms, -Mb, -MI)

-M: Memory Model

Group:
Scope:
Syntax:

Arguments:

Default:

Description:

Example:
See also:

CODE
Application
M SR,

"s": small memory model
"b": banked memory model
"I'": large memory model.

-Ms

The assembler for the MC68HC12 supports three different mem-
ory models. Default is the smal memory model, which
corresponds to the normal setup, i.e. a 64kB code-address space.
If you use some code memory expansion scheme, you may use
banded memory model. The large memory model is used when
using both code and data memory expansion scheme.

Memory models are interesting when mixing ANSI-C and assem-
bler files. For compatibility reasons, the memory model used by
the different files must be identical .

ASMOPTI ONS=- Ms

none.

120

Assembler

-MacroNest

-MacroNest: Configure Maximum Macro

Nesting
Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

See dso

Language

Assembly Unit

"-MacroNest" <Value>.

<Value>: max. allowed nesting level.
3000.

This option controls how deep macros calls can be nested. It's
main purpose is to avoid endless recursive macro invocations.
When the nesting leve is reached, then the message A

See the description of for an example.

Assembler

121

-MCUasm

-MCUasm: Switch Compatibility with MCUasm

ON

Group:
Scope:
Syntax:
Arguments:
Defaullt:

Description

Example
Seedso

VARIOUS
Assembly Unit
"-MCUasm".
none

none.

This switches ON compatibility mode with the MCUasm Assem-
bler. Additional features supported, when this option is activated
are enumerated in section “MCUasm Compatibility”.

ASMOPTI ONS=- MCUasm

122

Assembler

-N

-N: Display Notify Box

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

See also

MESSAGE
Assembly Unit
"-N".

none.

none.

Makes the assembler display an aert box if there was an error
during assembling. Thisis useful when running a makefile (please
see Manua about Make Utility) since the assembler waits for the
user to acknowledge the message, thus suspending makefile pro-
cessing. (The 'N stands for “Notify”.)

This feature is useful for halting and aborting a build using the
Make Utility.

ASMOPTI ONS=- N
If during assembling an error occurs, adialog box will be opened.

none.

Assembler

123

-NoBeep

-NoBeep: No Beep in Case of an Error

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
Seealso

MESSAGE
Assembly Unit
"-NoBeep'".
none.

none.

Normally there is a‘beep’ notification at the end of processing if
therewas an error. To have asilent error behavior, this* beep’ may
be switched off using this option.

ASMOPTI ONS=- NoBeep

none.

124

Assembler

-NoDebuglnfo

-NoDebugInfo: No Debug Information for ELF/

Dwarf Files
Group: LANGUAGE
Scope: Assembly Unit
Syntax: "-NoDebuglInfo".
Arguments: none.
Default: none.
Description By default, the assembler produces debugging info for the pro-

Example

See also

duced EL F/Dwarf files. With this option this can be switched off.
ASMOPT| ONS=- NoDebugl nf o

none.

Assembler

125

-NoEnv

-NoEnv:

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

Seedso

Do not use Environment

Startup. (This option cannot be specified interactively)
Assembly Unit

"-NoEnv".

none.

none.

This option can only be specified at the command line while start-
ing the application. It cannot be specified in any other
circumstances, including the default.env file, the command line or
whatever.

When this option is given, the application does not use any envi-
ronment (default.env, project.ini or tipsfile).

XX. exe - NoEnv

(use the actual executable name instead of “xx”)

126

Assembler

-ObjN

-ObjN: Object File Name Specification

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

See dso

OUTPUT

Assembly Unit

"-ObjN"<FileName>.

<FileName>: Name of the binary output file generated.

-ObjN%n.o (when relocatable file generated),|
-ObjN%n.abs (when absolute file generated).

Normally, the object file has the same name than the processed
source file, but with extension “.0” when relocatable code is gen-
erated or “.abs’ when absolute code is generated. This option
allows aflexible way to define the output file name. The modifier
“%n” can be used, it is replaced with the source file name.

If <file> in the option contains a path (absolute or relative), the
environment variable OBJPATH isignored.

ASMOPTI ONS=- Obj Na. out

The resulting object file will be “a.out”. If the environment vari-
able OBJPATH is set to “\src\obj”, the object file will
be“\src\obj\a.out”.

fibo.c -Cbj No. obj
The resulting object file will be “fibo.obj”.
myfile.c -Obj N .\objects_ %. obj

The object file will be named relative to the current directory to
“.\objects_myfile.obj. Note that the environment variable OBJ
PATH isignored, because the <file> contains a path.

Assembler

127

-Prod

-Prod: Specify Project File at Startup

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

See dso

none. (This option cannot be specified interactively)
none.

"-Prod=" <file>.

<file>: name of aproject or project directory

none.

This option can only be specified at the command line while start-
ing the application. It cannot be specified in any other
circumstances, including the default.env file, the command line or
whatever.

When this option is given, the application opens thefile as config-
uration file. When the file name does only contain a directory, the
default name project.ini is appended. When the loading fails, a

message box appears.
assenbl er. exe -prod=project.ini

(use the assembl er executable name instead of “assembler”)

128

Assembler

-Struct

-Struct: Support for Structured Types

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See also

INPUT
Assembly Unit
"-Struct".
None.

None

When this option is activated, the macro assembler also support
the definition and usage of structured types. Thisisinteresting for
application containing both ANSI C and Assembly modules.

ASMOPTI ONS=- St r uct
Chapter

Assembler

129

-V

-V: Prints the Assembler Version

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

Seedso

VARIOUS

None

"V

none.

none.

Prints the assembler version and the current directory

Note: Thisoption is useful to determine the current directory of
the assembler

-V producesthe following list:

Command Line '-Vv'
Assenbl er V-5.0.8, Jul 7 1998

D rectory: C\netrowerks\deno
Common Modul e V-5.0.7, Date Jul 7 1998
Wser Interface Mddule, V-5.0.17, Date Jul 7 1998

Assenbl er Kernel, V-5.0.13, Date Jul 7 1998
Assenbl er Target, V-5.0.8, Date Jul 7 1998

none.

130

Assembler

-View

-View: Application Standard Occurrence

Group:
Scope:
Syntax:

Arguments:

Default:

Description

Example
See aso

HOST
Assembly Unit
"-View" <kind>.

<kind> is one of:

“Window”: Application window has default window size
“Min”: Application window is minimized

“Max”: Application window is maximized

“Hidden”: Application window is not visible (only if arguments)

Application started with arguments: Minimized.
Application started without arguments: Window.

Normally the application (e.g. assembler, linker, compiler, ...) is
started as normal window if no arguments are given. If the appli-
cation is started with arguments (e.g. from the maker to assemble/
link/compile afile) then the application is running minimized to
alow batch processing. However, with this option the behavior
may be specified. Using -ViewWindow the application is visible
with its normal window. Using -ViewMin the application is visi-
bleiconified (in the task bar). Using -ViewMax the application is
visible maximized (filling the hole screen). Using -ViewHidden
the application processes arguments (e.g. files to be compiled/
linked) completely invisible in the back ground (no window/icon
in the task bar visible). However e.g. if you are using the
option adialog box is till possible.

c:\metrowerks\prog\linker.exe -ViewHidden fibo.prm

none.

Assembler

131

-W1

-W1: No Information Messages

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
Seealso

MESSAGE
Assembly Unit
"-W1".

none.

none.

Inhibits the assembler’s printing INFORMATION messages, only
WARNING and ERROR messages are written to the error listing
file and to the assembler window.

ASMOPTI ONS=- WL

none.

132 Assembler

-W2

-W2: No Information and Warning Messages
Group: MESSAGE

Scope: Assembly Unit
Syntax: "-W2".
Arguments: none.

Default: none.

Description Suppresses al messages of type INFORMATION and WARN-
ING, only ERRORSs are written to the error listing file and to the
assembler window .

Example ASMOPTI ONS=- W
See also none.

Assembler

133

-WETrrFile

-WErrFile: Create "err.log" Error File

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

Seedso

MESSAGE

Assembly Unit
"-WErrFile" ("On" | "Off").
none.

err.logis created/deleted.

The error feedback from the assembler to called tools is now done
with a return code. In 16 bit windows environments, this was not
possible, so in the error case afile “errlog” with the numbers of
errors written into was used to signa an error. To state no error,
the file “err.log” was deleted. Using UNIX or WIN32, there is
now areturn code available, so thisfile is no longer needed when
only UNIX / WIN32 applications are involved. To use a 16 bit
maker with thistool, the error file must be created in order to sig-
nal any error.

-VErrFiletn
err.log is created/del eted when the application is finished.
-VErrFileCr f

existing err.log is not modified.

134

Assembler

-Wmsga8x3

-Wmsg8x3: Cut File Names in Microsoft
Format to 8.3

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

See dso

MESSAGE
Assembly Unit
"-Wmsg8x3".
none.

none.

Some editors (e.g. early versions of WinEdit) are expecting the
file name in the Microsoft message format in a strict 8.3 format,
that means the file name can have at most 8 characters with not
more than a 3 characters extension. Using Win95 or WinNT
longer file names are possible. With this option the file name in
the Microsoft message is truncated to the 8.3 format.

x:\nysourcefile.c(3): | NFCRVATI ON C2901: Unrol ling
| oop

With the option -Wmsg8x3 set, the above message will be
x:\nysource. c(3): | NFCRVATION 2901: Unrolling | oop

Assembler

135

-WmsgCE

-WmsgCE: RGB color for error messages

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See also

MESSAGE

Compilation Unit

"-WmsgCE" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCE16711680 (rFF g0O0 b0O, red)

With this options it is possible to change the error message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

-WmsgCE255 changes the error messages to blue.

none.

136

Assembler

-WmsgCF

-WmsgCF: RGB color for fatal messages

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See dso

MESSAGE

Compilation Unit

"-WmsgCF"' <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCF8388608 (r80 g00 b00, dark red)

With this options it is possible to change the fatal message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

-WmsgCF255 changes the fatal messages to blue.

none.

Assembler 137

-WmsgCl

-WmsgCl: RGB color for information
messages

Group: MESSAGE

Scope: Compilation Unit

Syntax: "-WmsgCl" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCl132768 (r00 g80 b00, green)

Description With this options it is possible to change the information message

color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example -WmsgCl 255 changes the information messages to blue.
See also none.

138

Assembler

-WmsgCU

-WmsgCU: RGB color for user messages

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See dso

MESSAGE

Compilation Unit

"-WmsgCU" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCUO (r00 g00 b00, black)

With this options it is possible to change the user message color.
The value to be specified has to be a RGB (Red-Green-Blue)
value, and has to be specified in decimal.

-WmsgCU255 changes the user messages to blue.

none.

Assembler

139

-WmsgCW

-WmsgCW: RGB color for warning messages

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example
See also

MESSAGE

Compilation Unit

"-WmsgCW" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCW255 (r00 g00 bFF, blue)

With this options it is possible to change the warning message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

-WmsgCWO0 changes the warning messages to black.

none.

140

Assembler

-WmsgFb (-WmsgFbv, -WmsgFbm)

-WmsgFb: Set Message File Format for Batch

Mode
Group:
Scope:
Syntax:

Arguments:

Default:

Description

Example

MESSAGE

Assembly Unit
"-WmsgFb" ["v" | "m"].
"v": Verbose format.
"m": Microsoft format.
-WmsgFbm

The assembler can be started with additional arguments (e.g. files
to be assembled together with Assembler options). If the assem-
bler has been started with arguments (e.g. from the Make Tool or
with the ‘%f’ argument from the IDF), the assembler assembles
the files in a batch mode, that is no Assembler window is visible
and the assembler terminates after job completion.

If the assembler is in batch mode the assembler messages are
written to afile and not visible on the screen. This file only con-
tains the assembl er messages (see examples below).

By default, the assembler uses a Microsoft message format to
write the assembler messages (errors, warnings, information mes-
sages) if the assembler isin batch mode.

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose error
format with line, column and source information

var 1: equ 5
var 2: equ 5
if (varl=var?2)
NCP
endi f

endi f

Assembler

141

Seedso

By default, the assembler generates the following error output in
the assembler window if it is running in batch mode:

X\ TVR. ASM 12): ERROR Condi tional el se not all owed here

Setting the format to verbose, more information is stored in the
file:

ASMOPTI ONS=- WisgFbv

>>jin "C\tw2.asnt, line 6, col O, pos 81
endi f

N

ERRCR A1001: Conditional else not allowed here

142

Assembler

-WmsgFi (-WmsgFiv, -WmsgFim)

-WmsgFi: Set Message File Format for
Interactive Mode

Group:
Scope:
Syntax:

Arguments:

Default:

Description

Example

MESSAGE
Assembly Unit

"-WmsgFi" ["v" | "m"].

"v": Verbose format.
"m": Microsoft format.
-WmsgFiv

If the assembler is started without additional arguments (e.g. files
to be assembled together with Assembler options), the assembler
isin the interactive mode (that is, awindow is visible).

By default, the assembler uses the verbose error file format to
write the assembler messages (errors, warnings, information

messages).

With this option, the default format may be changed from the ver-
bose format (with source, line and column information) to the
Microsoft format (only line information).

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose error
format with line, column and source information.

Note: Using the Microsoft format may speed up the assembly
process, because the assembler has to write less informa-
tion to the screen.

By default, the assembler following error output in the assembler
window if it is running in interactive mode.

>>in "X \TWE ASM, line 12, col 0, pos 215
endi f
endi f

N

ERRCR A1001: Conditional else not allowed here

Assembler

143

Seedso

Setting the format to Microsoft, lessinformation is displayed:

ASMPT| ONS=- WisgFi m
X\ATWE. ASM 12): ERROR conditional else not allowed here

Environment variable ERRORFILE
Option -WmsgFob

Option -WmsgFb

Option -WmsgFonp

Option -WmsgFoi

Option -WmsgFonf

144

Assembler

-WmsgFob

-WmsgFob: Message Format for Batch Mode
MESSAGE

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

See dso

Assembly Unit

"-WmsgFob"<string>.

<string>: format string (see below).
-WmsgFob" %f%e(%0l): %K %d: %m\n"

With this option it is possible modify the default message format
in batch mode. The following formats are supported (supposed
that the sourcefileisx: \ met r ower ks\ sour cefi | e. asnx)

Format Descri ption

%

%
%
%
74
%k
%l
%n
%%
\n

Sour ce Extract
Pat h

Pat h and nane
File nane

Ext ensi on

File (8 chars)
Ext ension (3 chars)
Li ne

Col um

Pos

Upper case ki nd
Lower case ki nd
Nunber

Message

Per cent

New | i ne

x: \ met r oner ks\
x: \ net r oner ks\ sourcefile
sourcefile

. asnx

sour cefi

.asm

3

47

1234

ERRCR

error

A1051

t ext

%

ASMOPT| ONS=- WrsgFob” % % (%): 9% 9%l: %m n”

produces a message in following format:

x:\netrowerks\sourcefile.asnx(3): error AL051: R ght
par ent hesi s expect ed

Assembler 145

Option -WmsgFonf
Option -WmsgFoi

146

Assembler

-WmsgFoi

-WmsgFoi: Message Format for Interactive

Mode
Group:
Scope:
Syntax:

Arguments:
Defaullt:

Description

Example

MESSAGE

Assembly Unit
"-WmsgFoi"<string>.

<string>: format string (see below).

-WmsgFoi"\n>> in \"%f%e\", line %l, col %c, pos %0\n%s\n%K
%d: %m\n"

With this option it is possible modify the default message format
in interactive mode. The following formats are supported (sup-
posed that the source file is
x:\'met rower ks\ sour cefil e. asnx):

Format Descri ption Exanpl e

% Source Extract

% Pat h x: \ met r ower ks\
% Pat h and nane x: \ net rower ks\ sourcefil e
% File nane sourcefile

% Ext ensi on . asnx

N File (8 chars) sour cefi

% Extension (3 chars) .asm

% Li ne 3

% Col um 47

% Pos 1234

uw Upper case ki nd ERRCR

%K Lower case ki nd error

%l Nunber A1051

%n Message t ext

%% Per cent %

\n New | i ne

ASMOPT| ONS=- WrsgFoi "% %&(%): % %: %nn”
produces a message in following format:

x:\met rowerks\ sourcefile.asnx(3): error Al051: R ght
parent hesi s expect ed

Assembler

147

Seedso

Environment variable ERRORFILE
Option -WmsgFb

Option -WmsgFi

Option -WmsgFonp

Option -WmsgFonf

Option -WmsgFob

148

Assembler

-WmsgFonf

-WmsgFonf: Message Format for no File

Information

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFonf"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFonf"%K %d: %m\n"

Description Sometimes there is no file information available for a message
(e.g. if amessage not related to a specific file). Then this message
format string is used. The following formats are supported:

Format Description Exanpl e
uw Upper case ki nd ERRCR
% Lower case ki nd error
%l Nunber L10324
% Message t ext
%0 Per cent %
\n New |ine
Example ASMOPTI ONS=- WrsgFonf” % %d: % n”

See dso

produces a message in following format:

i nformati on L10324: Li nking successful

Assembler 149

-WmsgFonp

-WmsgFonp: Message Format for no Position
Information

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgFonp"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFonp" %f%e: %K %d: %om\n"

Description Sometimes there is no position information available for a mes-

sage (e.g. if amessage not related to a certain position). Then this
message format string is used. The following formats are sup-
ported (supposed that the source file is
x:\metrowerks\sourcefile.asmx)

Format Description Exanpl e
% Pat h x: \ met r ower ks\
% Path and nane x:\ net rower ks\ sourcefile
% Fil e nane sourcefile
% Ext ensi on . asnx
9N File (8 chars) sour cef i
% Extension (3 chars) .asm
9w Upper case ki nd ERRCR
%K Lower case ki nd error
%l Nunber L10324
%n Message t ext
%% Per cent %
\n New | i ne
Example ASMOPTI ONS=- WrsgFonf " %k %d: %mn n”

produces a message in following format:

i nformati on L10324: Li nking successful
Seeaso

150

Assembler

Option -WmsgFonfob

Assembler

151

-WmsgNe

-WmsgNe: Number of Error Messages

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

Seedso

MESSAGE

Assembly Unit

"-WmsgNe" <number>.

<number>: Maximum number of error messages.
50

With this option the amount of error messages can be reported
until the assembler stops assembling. Note that subsequent error
messages which depends on a previous one may be confusing.

ASMOPTI ONS=- WrsgNe2
The assembler stops assembling after two error messages.

152 Assembler

-WmsgNi

-WmsgNi: Number of Information Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgNi" <number>.

Arguments: <number>: Maximum number of information messages.
Default: 50

Description With this option the amount of information messages can be set.
Example ASMOPTI ONS=- WrsgNi 10

Only ten information messages are logged.
Seedso

Assembler

153

-WmsgNu

-WmsgNu: Disable User Messages

Group:
Scope:
Syntax:

Arguments:

Default:

Description

Example
Seedso

MESSAGE
None.
"-WmsgNu" ["=" {"a" | "b" | "c" | "d"}].

“d’: Disable messages about include files

": Disable messages about reading files

: Disable messages about generated files

: Disable messages about processing statistics
: Disable informal messages

, T

o Q o

none.

The application produces some messages which are not in the
norma message categories (WARNING, INFORMATION,
WRROR, FATAL). With this option such messages can be dis-
abled. The idea of this option is to reduce the amount of messages
and to simplify the error parsing of other tools.

“a": The application informs about al included files. With this
suboption this can be disabled.

“b”: With this suboption messages about reading files e.g. the
files used as input can be disabled.

“c”: Disables messages informing about generated files.

“d”: At the end the application may inform about statistics, e.g.
code size, RAM/ROM usage and so on. With this suboption this
can be disabled.

“@’: With this option informa messages (e.g. memory model,
floating point format, ...) can be disabled.

Note: Depending on the application, not all suboptions may
make sense. In this case they are just ignored for compati-
bility.

- WrsgNu=c

none.

154 Assembler

-WmsgNw

-WmsgNw: Number of Warning Messages
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgNw" <number>.

Arguments: <number>: Maximum number of warning messages.
Default: 50

Description With this option the amount of warning messages can be set.
Example ASMOPTI ONS=- Wrs gNw15

Only 15 warning messages are logged.
Seedso

Assembler 155

-WmsgSd

-WmsgSd: Setting a Message to Disable

Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSd" <number>.

Arguments: <number>: Message number to be disabled, e.g. 1801
Default: none.

Description With this option a message can be disabled, so it does not appear
in the error output.

Example -WrsgSd1801
Seedso

156

Assembler

-WmsgSe

-WmsgSe: Setting a Message to Error

Group:
Scope:
Syntax:
Arguments:
Default:
Description
Example
Seedso

MESSAGE

Assembly Unit

"-WmsgSe" <number>.

<number>: Message number to be an error, e.g. 1853
none.

Allows changing a message to an error message.

- WrsgSel1853

Assembler

157

-WmsgSi

-WmsgSi: Setting a Message to Information

Group:
Scope:
Syntax:
Arguments:
Default:
Description
Example
Seealso

MESSAGE

Assembly Unit

"-WmsgSi" <number>.

<number>: Message number to be an information, e.g. 1853
none.

With this option a message can be set to an information message.
-WrsgSi 1853

158 Assembler

-WmsgSw

-WmsgSw: Setting a Message to Warning
Group: MESSAGE

Scope: Assembly Unit

Syntax: "-WmsgSw" <number>.

Arguments: <number>: Error number to be awarning, e.g. 2901
Default: none.

Description With this option a message can be set to awarning message.
Example - WrsgSw2901
See also

Assembler

159

-WOutFile

-WOutFile: Create Error Listing File

Group:
Scope:
Syntax:
Arguments:
Default:

Description

Example

Seedso

MESSAGE

Assembly Unit
"-WOutFile" ("On" | "Off").
none.

Error listing file is created.

This option controls if a error listing file should be created at all.
The error listing file contains a list of all messages and errors
which are created during a assembly process. Since the text error
feedback can now aso be handled with pipes to the calling appli-
cation, it is possible to obtain this feedback without an explicit
file. The name of the listing file is controlled by the environment
variable

-Wut Fi l en

Theerror fileis created as specified with
-VErrFileCr f

No error fileis created.

160

Assembler

-WStdout

-WStdout: Write to Standard Output

Group:
Scope:
Syntax:

Arguments:
Default:

Description

Example

See dso

Directive

MESSAGE

Assembly Unit
"-WStdout" ("On" | "Off").
none.

output is written to stdout.

With Windows applications, the usua standard streams are avail-
able. But text written into them does not appear anywhere unless
explicitly requested by the calling application. With this option is
can be controlled if the text to error file should a so be written into
the stdout.

- Wt dout Cn
All messages are written to stdout.
-VErFileCr f

Nothing is written to stdout.

Assembler directives are described in the chapter.

Assembler 161

Sections

Sections are portions of code or data, which cannot be split into smaller element.
Each section has a name, atype and some attributes.

Each assembly source file contains at least one section. The number of sectionsin
an assembly source file is only limited by the amount of memory available on the
system at assembly time. If inside of a single source file, severa sections with the
same name are detected, the code is concatenated in one large section.

Sections from different modules, but with the same name will be combined in asin-
gle section at linking time.

Each section is defined trough an and a

Section Attribute

According to their content each section an attribute is associated with each section.
A section may be:

°a

°a

°a

Code Sections

A section containing at least an instruction is considered to be a code section. Code
sections are always allocated in the target processor ROM area.

Code sections should not contain any variable definition (variable defined using the
DS directive). You will not have any write access on variables defined in a code
section. Additionally, these variables cannot be displayed in the debugger as data.

Constant Sections

A section containing only constant data definition (variables defined using the DC
or DCB directives) is considered to be a constant section. Constant sections should
be alocated in the target processor ROM area, otherwise they cannot be initiaized
at application loading time.

We strongly recommend you to define separate sections for the definition of vari-
ables and constant variables. This will avoid any problems in the initialization of

162 Assembler

constant variables.

Data Sections

A section containing only variables (variable defined using the DS directive) is con-
sidered to be a data section. Data sections are always allocated in the target proces-
sor RAM area.

Note: A section containing variables (DS) and constants (DC) or codeis not a data
section. Such a section with mixed content is put in ROM by default.

We strongly recommend to define separate sections for the definition of variables
and constant variables. Thiswill avoid any problemsin theinitialization of constant
variables.

Section Type

First of al a programmer should decide whether he wants to use relocatable or
absolute code in his application. The assembler allows to mix usage of absolute and
relocatable sectionsin a single application and also in asingle source file. The main
difference between absolute and relocatable sections is the way symbol addresses
are determined.

Absolute Sections

The starting address of an absolute section is known at assembly time. An absolute
section is defined trough the directive . The operand specified in the ORG
directive determines the start address of the absolute section.

Example

XDEF entry

CRG $A00 ; Absol ute constant data section.
cstl: DC B $A6
cst2: DC.B $BC

CRG $800 ; Absol ute data section.
var: DS B 1

Assembler 163

CRG $Q00 ; Absol ute code section.
entry:

LDAA cstl ; Load value in cstl

ADDA cst2 ; Add value in cst2

STAA var ; Store in var

BRA entry

In the above example, two bytes of storage are alocated starting at address $A00.

Symbol ‘cstl’ will be allocated at address $A00 and ‘cst2” will be allocated at

address $A01. All subsequent instructions or data allocation directives will be

located in the absolute section until another section is specified using the ORG or
directive.

When using absolute sections, it is the user responsibility to ensure that there is no
overlap between the different absolute sections defined in his application. In the
previous example, the programmer should ensure that the size of the section starting
at address $A00 is not bigger than $200 bytes, otherwise section starting at $A00
and section starting at $C00 will overlap.

When object files are generated, even applications containing only absolute sec-
tions must be linked. In that case, there should not be any overlap between the
address ranges from the absolute sections defined in the assembly file and the
address ranges defined in the linker parameter file.

Example

The PRM file used to assemble the example above, can be defined as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
test.o /* Name of the object files in the application. */

END

SECTI ONS

/* READ ONLY nenory area. There shoul d be no overlap between this
nmenmory area and the absol ute sections defined in the assenbly
source file. */

MY_RCM = READ ONLY 0x1000 TO Ox1FFF;

/* READ WRI TE nenory area. There should be no overlap between this
nmenory area and the absol ute sections defined in the assenbly
source file. */

MY_RAM = READ WR TE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Rel ocat abl e variabl e sections are allocated in M\W_RAM */

DEFAULT_RAM | NTO M¥_RAM
/* Rel ocatabl e code and constant sections are allocated in MYy ROM */

164

Assembler

DEFALLT ROM | NTO MY_RQM

END

INT entry /* Application entry point. */

VECTCR ADDRESS OxFFFE entry /* Initialization of the reset vector. */

The linker PRM file contains at |east:

» The name of the absolute file (command LINK).
» The name of the object file which should be linked (command NAMES).

* The specification of a memory area where the sections containing variables must
be alocated. At least the predefined section DEFAULT_RAM (or its ELF dias
‘.data’) must be placed there. For applications containing only absolute sections,
nothing will be alocated there (commands SECTIONS and PLACEMENT).

» The specification of a memory area where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF alias ‘.text’) must be placed there. For applications containing only absolute
sections, nothing will be allocated there (commands SECTIONS and PLACE-

MENT).

* The specification of the application entry point (command INIT)
 The definition of the reset vector (command VECTOR ADDRESS)

Relocatable Sections

The starting address of a relocatable section is evaluated at linking time, according
to the information stored in the linker parameter file. A relocatable section is
defined trough the directive

Example

const Sec:
cst 1:
cst 2:

dat aSec:
var:

codeSec:
entry:

XDEF entry

SECTION ; Rel ocatabl e constant data section.
DC B $A6

DC. B $BC

SECTION ; Rel ocatabl e data section.
DS. B 1

SECTION ; Rel ocat abl e code section.

LDAA cstl ; Load value in cstl
ADDA cst 2 ; Add value in cst2
STAA var ; Store in var

BRA entry

Assembler 165

In the previous example, two bytes of storage are allocated in section ‘constSec’.
Symbol ‘cstl’ will be alocated at offset 0 and ‘cst2’ at offset 1 from the beginning
of the section. All subsequent instructions or data alocation directives will be
located in the relocatable section ‘constSec’ until another section is specified using
the or SECTION directive.

When using relocatable sections, the user do not need to care about overlapping
sections. The linker will assign a start address to each section according to the input
from the linker parameter file.

The customer can decide to define only one memory area for the code and constant
sections and another one for the variable sections or to split his sections over several
memory area.

Example: Defining one RAM and one ROM Area.

When all constant and code sections as well as data sections can be allocated con-
secutively, the PRM file used to assemble the example above, can be defined as fol-
lows:

LINK test.abs /* Name of the executable file generated. */
NAMES
test.o /* Name of the object files in the application. */
END
SECTI ONS
/* READ ONLY nenory area. */
MY_RCOM = READ C\LY 0x0B00 TO OxOBFF;
/* READ WR TE nenory area. */
MY_RAM = READ WR TE 0x0800 TO OxO8FF;
END
PLACEMENT
/* Relocatabl e variabl e sections are allocated in MY_RAM */
DEFAULT RAM | NTO MY_RAM
/* Rel ocatabl e code and constant sections are allocated in Mv_ROM */
DEFAULT ROM | NTO MY_RQV
END
INT entry /* Application entry point. */
VECTCR ADDRESS OxFFFE entry /* Initialization of the reset vector. */

Thelinker PRM file contains at least:

» The name of the absolute file (command LINK).
» The name of the object file which should be linked (command NAMES).

166 Assembler

* The specification of amemory area where the sections containing variables must
be allocated At least the predefined section DEFAULT_RAM (or its ELF dias
‘.data’) must be placed there. (commands SECTIONS and PLACEMENT).

» The specification of a memory area where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF alias ‘.text’) must be placed there. (commands SECTIONS and PLACE-
MENT).

* The specification of the application entry point (command INIT)
 The definition of the reset vector (command VECTOR ADDRESS)

According to the PRM file above,

« the section ‘dataSec’ will be allocated starting at 0x0800.
« the section ‘ constSec’ will be allocated starting at 0xOBOO.
« the section ‘ codeSec will be allocated next to the section ‘ constSec’.

Example: Defining multiple RAM and ROM Areas.

When dl constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to assemble the example above, can be defined as
follows:

LINK test.abs /* Nanme of the executable file generated. */

NAMVES
test.o /* Name of the object files in the application. */

END

SECTI ONS
RCM AREA 1= READ ON\LY 0xB00O TO OxB7F; /* READ ONLY nenory area. */
RCM AREA 2= READ ONLY O0xQ00 TO OxCrF;/* READ O\LY nenory area. */
RAM AREA 1= READ WR TE 0x800 TO Ox87F;/* READ WR TE nenory area. */
RAM AREA 2= READ WR TE 0x900 TO 0x97F;/* READ WRI TE nenory area. */

END
PLACEMENT
/* Relocatabl e variabl e sections are allocated in MY_RAM */
dat aSec I NTO RAM AREA 2;
DEFAULT_RAM I NTO RAM AREA 1;
/* Rel ocatabl e code and constant sections are allocated in WY ROM */
const Sec I NTO ROM AREA 2;
codeSec, DEFAULT_ROM | NTO ROM AREA 1;
END
INT entry /* Application entry point. */

VECTCR ADDRESS OxFFFE entry /* Initialization of the reset vector. */
The linker PRM file contains at |east:

Assembler 167

» The name of the absolute file (command LINK).
» The name of the object file which should be linked (command NAMES).

* The specification of memory areas where the sections containing variables must
be alocated At least the predefined section DEFAULT_RAM (or its ELF aias
‘.data’) must be placed there (commands SECTIONS and PLACEMENT).

» The specification of memory areas where the sections containing code or con-
stants must be allocated. At least the predefined section DEFAULT_ROM (or its
ELF dias ‘.text’) must be placed there. (commands SECTIONS and PLACE-
MENT).

 The specification of the application entry point (command INIT)
» The definition of the reset vector (command VECTOR ADDRESS)

According to the PRM file above,

* the section ‘dataSec’ will be allocated starting at 0x0900.
* the section ‘ constsec will be allocated starting at 0x0COO.
* the section ‘codeSec’ will be allocated starting at 0x0OBOO.

Relocatable vs. Absolute Section

Generally we recommend to develop application using relocatable sections.Relo-
catable sections offers several advantages.

Modularity

An application is more modular when programming can be divided into smaller
units called sections. The sections themselves can be distributed among different
source files.

Multiple Developers

When an application is split over different files, multiple developers can be
involved in the development of the application. In order to avoid major problems
when merging the different files, attention must be paid to following items:

» Anincludefile must be available for each assembly sourcefile, containing XREF
directives for each exported variables, constants and functions. Additionally, the
interface to the function should be described there (parameter passing rules as
well as function return value).

» When accessing variables, constants or function from another module, the corre-
sponding include file must be included.

168 Assembler

* Variables or constants defined by another developer must always be referenced
by their names.

* Before invoking a function implemented in another file, the developer should
ensure he respect the function interface (parameters are passed as expected,
return value isretrieved correctly).

Early Development

The whole application can be developed before the application memory map is
known. Often the definitive application memory map can only be determined once
the size required for code and data can be evaluated. The size required for code or
data can only be quantified once the major part of the application is implemented.
When absolute sections are used, defining the definitive memory map is an iterative
process of mapping and remapping the code. The assembly files must be edited,
assembled and linked several times. When relocatabl e sections are used, this can be
achieved by editing the PRM file and linking the application.

Enhanced Portability

As the memory map is not the same for all MCU derivatives, using rel ocatable sec-
tions allow to easily port the code for another MCU. When porting relocatable code
to another target you only need to link the application again, with the appropriate
memory map.

Tracking Overlaps

When using absolute sections, the programmer must ensure there is no overlap
between his sections. When using rel ocatabl e sections, the programmer do not need
to take care about sections overlapping. The label offsets are all evaluated relatively
to the beginning of the section. Absolute addresses are determined and assigned by
the linker.

Reusability

When using rel ocatable sections, code implemented to handle a specific I/0 device
(serial communication device), can be reused in another application without any
modification.

Assembler 169

Assembler Syntax

An assembler source program is a sequence of source statements. Each source state-
ment is coded on one single line of text and can be:

°a
°a

Comment Line

A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon fol-
lowed by atext. Comments are included in the assembly listing, but are not signifi-
cant to the assembler.

An empty lineis also considered as a comment line.
Example:

; This is a comment |ine

Source Line

Each source statement includes one or more of the following four fields:

a

e an

* one or several

a

Characters on the source line may be either upper or lower case. Directives and

instructions are case insensitive, whereas symbols are case sensitive unless option
for case insensitivity on label names (-Ci) is activated.

Label Field

The label field is the first field in a source line. A label is a symbol followed by a
colon. Labels can include letters (‘A’.. ‘Z’ or ‘a.. ‘Z'), underscores, periods and
numbers. The first character must not be a number.

Note: For compatibility with other macro assembler vendor, an identifier starting

170 Assembler

on column 1 is considered to be a label, even when it is not terminated by a

colon.

When option -MCUasm (Switch ON MCUasm Compatibility Mode) is acti-
vated, labels MUST be terminated with a colon. An error message isissued,
when a label is not followed by a colon.

Labels are required on assembler directives that define the value of a symbol (SET
or EQU). For these directives, labels are assigned the value corresponding to the
expression in the operand field.

Labels specified in front of another directive, an instruction or a comment are
assigned the value of the location counter in the current section.

Note: When the macro assembler expands macro it generates internal symbols
startingwith an‘_’. Therefore, to avoid potential conflicts, user defined
symbols should not begin with an underscore

Note: For the macro assembler, a .B or .W at the end of a label has a specific
meaning. Therefore, to avoid potential conflicts, user defined symbols
should not end with .B or .W.

Operation Field

The operation field follows the label field and is separated from it by a white space.
The operation field must not begin in the first column. An entry in the operation
field is one of the following:

e an mnemonic
e a name

e a name
Instruction

Executable instructions for the M68HC12 processor are defined in the “CPU Refer-
ence Manual CPU12RM/AD".

The following table presents an overview of the instruction available:

Instruction Description

ABA Add accumulator A and B

ABX Add accumulator B and register X

ABY Add accumulator B and register Y

Assembler

171

Instruction Description

ADCA Add with carry to accumulator A
ADCB Add with carry to accumulator B
ADDA Add without carry to accumulator A
ADDB Add without carry to accumulator B
ADDD Add without carry to accumulator D
ANDA Logical AND with accumulator A
ANDB Logical AND with accumulator B
ANDCC Logical AND with CCR

ASL Arithmetic shift left in memory
ASLA Arithmetic shift left accumulator A
ASLB Arithmetic shift left accumulator B
ASLD Arithmetic shift left accumulator D
ASR Arithmetic shift left in memory
ASRA Arithmetic shift right accumulator A
ASRB Arithmetic shift right accumulator B
BCC Branch if carry clear

BCLR Clear bitsin memory

BCS Branch if carry Set

BEQ Branch if equal

BGE Branch if greater than or equal
BGND Placein BGND mode

BGT Branch if greater than

BHI Branch if higher

BHS Branch if higher or same

BITA Logical AND accumulator A and memory
BITB Logical AND accumulator B and memory
BLE Branch if Less Than or equal

BLO Branch if lower (Same asBCS)
BLS Branch if lower or Same

BLT Branch if lessthan

172

Assembler

Instruction Description

BMI Branch if Minus

BNE Branch if not equal

BPL Branch if Plus

BRA Branch Always

BRCLR Branch if bit clear

BRN Branch never

BRSET Branch if bits set

BSET Set bitsin memory

BSR Branch subroutine

BVvVC Branch if overflow cleared

BVS Branch if overflow set

CALL call subroutine in extended memory
CBA Compare accumulator A and B

CLC Clear carry bit

CLI Clear interrupt bit

CLR Clear memory

CLRA Clear accumulator A

CLRB Clear accumulator B

CLV Clear two’'s complement overflow bit
CMPA Compare memory with accumulator A
CMPB Compare memory with accumulator B
COM One's complement on memory location
COMA One's complement on accumulator A
COMB One's complement on accumulator B
CPD Compare accumulator D and memory
CPS Compare register SP and memory
CPX Compare register X and memory
CPY Compare register Y and memory
DAA Decimal adjust accumulator A

DBEQ Decrement counter and branch if null

Assembler

173

Instruction Description

DBNE Decrement counter and branch if not null

DEC Decrement memory location

DECA Decrement accumulator A

DECB Decrement accumulator B

DES Decrement register SP

DEX Decrement index register X

DEY Decrement index register Y

EDIV Unsigned division 32-bits/16 bits

EDIVS Signed division 32-bits/16 bits

EMACS Multiply and accumulate signed

EMAXD Get maximum of 2 unsigned integer in accumulator D
EMAXM Get maximum of 2 unsigned integer in memory
EMIND Get minimum of 2 unsigned integer in accumulator D
EMINM Get minimum of 2 unsigned integer in memory
EMUL 16-bit * 16-bit multiplication (unsigned)
EMULS 16-bit * 16-bit multiplication (signed)

EORA Logical XOR with accumulator A

EORB Logical XOR with accumulator B

ETBL 16-Bit Table Lookup and Interpolate

EXG Exchange register content

FDIV 16-bit / 16-bits fractional divide

IBEQ Increment counter and branch if null

IBNE Increment counter and branch if not null

IDIV 16-bit / 16-bit integer division (unsigned)
IDIVS 16-bit / 16-bit integer division (signed)

INC Increment memory location

INCA Increment accumulator A

INCB Increment accumul ator B

INS Increment register SP

INX Increment register X

174

Assembler

Instruction Description

INY Increment register Y

IMP Jump to label

JSR Jump to subroutine

LBCC Long branch if carry clear

LBCS Long branch if carry Set

LBEQ Long branch if equal

LBGE Long branch if greater than or equal
LBGT Long branch if greater than

LBHI Long branch if higher

LBHS Long branch if higher or same
LBLE Long branch if Less Than or equal
LBLO Long branch if lower (Same as BCS)
LBLS Long branch if lower or Same
LBLT Long branch if less than

LBMI Long branch if Minus

LBNE Long branch if not equal

LBPL Long branch if Plus

LBRA Long branch Always

LBRN Long branch never

LBSR Long branch subroutine

LBVC Long branch if overflow clear
LBVS Long branch if overflow set
LDAA Load accumulator A

LDAB Load accumulator B

LDD Load accumulator D

LDS Load register SP

LDX Load index register X

LDY Load index register Y

LEAS Load SP with effective Address
LEAX Load X with effective Address

Assembler

175

Instruction Description

LEAY Load Y with effective Address

LSL Logical shift left in memory

LSLA Logical shift left accumulator A

LSLB Logical shift left accumulator B

LSLD Logical shift left accumulator D

LSR Logica shift right in memory

LSRA Logical shift right accumulator A

LSRB Logical shift right accumulator B

LSRD Logical shift right accumulator D

MAXA Get maximum of 2 unsigned byte in accumulator A
MAXM Get maximum of 2 unsigned byte in memory
MEM Membership Function

MINA Get minimum of 2 unsigned byte in accumulator A
MINM Get minimum of 2 unsigned byte in memory
MOVB Memory to memory byte move

MOVW Memory to memory word move

MUL 8* 8 hit unsigned multiplication

NEG 2's complement in memory

NEGA 2's complement accumulator A

NEGB 2's complement accumulator B

NOP No operation

ORAA Logical OR with accumulator A

ORAB Logical OR with accumulator B

ORCC Logical OR with CCR

PSHA Push register A

PSHB Push register B

PSHC Push register CCR

PSHD Push register D

PSHX Push register X

PSHY Push register Y

176

Assembler

Instruction Description

PULA Pop register A

PULB Pop register B

PULC Pop register CCR

PULD Pop register D

PULX Pop register X

PULY Pop register Y

REV MIN-MAX Rule Evaluation for 8-bits values
REVW MIN-MAX Rule Evaluation for 16-bits values
ROL Rotate memory left

ROLA Rotate accumulator A |eft

ROLB Rotate accumulator B left

ROR Rotate memory right

RORA Rotate accumulator A right

RORB Rotate accumulator B right

RTC Return from CALL

RTI Return from Interrupt

RTS return from subroutine

SBA Subtract accumulator A and B

SBCA Subtract with carry from accumulator A
SBCB Subtract with carry from accumulator B
SEC Set carry bit

SEI Set interrupt bit

SEV Set two's complement overflow bit
SEX Sign extend into 16 bit register

STAA Store accumulator A

STAB Store accumulator B

STD Store accumulator D

STOP Stop

STS Store register SP

STX Storeregister X

Assembler 177

Instruction Description

STY Storeregister Y
SUBA Subtract without carry from accumulator A
SUBB Subtract without carry from accumulator B
SUBD Subtract without carry from accumulator D
SWiI Software interrupt
TAB Transfer AtoB
TAP Transfer A to CCR
TBA Transfer Bto A
TBEQ Test counter and branch if null
TBL 8-Bit Table Lookup and Interpolate
TBNE Test counter and branch if not null
TFR Transfer register to register
TPA Transfer CCRto A
TRAP Software I nterrupt
TST Test memory for 0 or minus
TSTA Test accumulator A for O or minus
TSTB Test accumulator B for 0 or minus
TSX Transfer SPto X
TSY Transfer SPtoY
TXS Transfer X to SP
TYS Transfer Y to SP
WAI Wait for Interrupt
WAV Weighted Average Calculation
XGDX Exchange D with X
XGDY Exchange D with Y
Directive

Assembler directives are described in the “Assembler Directives’ chapter in this
manual.

178 Assembler

Macro Name

A user-defined macro can be invoked in the assembler source program. This results
in the expansion of the code defined in the macro. Definition and usage of macros
are described in the “Macros’ chapter in this manual.

Operand Field: Addressing Modes

The operand fields, when present, follow the operation field and are separated from
it by awhite space. When two or more operand subfiel ds appear within a statement,
acommamust separate them.

The following addressing mode notations are allowed in the operand field:

Addressing Mode Notation

No operands
<8-hit address>
<16-hit address>

<PC relative, 8-Bit offset> or
<PC relative, 16-Bit offset>

#<immediate 8-bit expression> or
#<immediate 16-hit expression>

<5-bit offset>, xysp

<3-hit offset>, -xys

<3-bit offset>, +xys

<3-bit offset>, xys-

<3-bit offset>, xys+

abd, xysp

<9-bit offset>, xysp

<16-hit offset>, xysp

[<16-bit offset>, xysp]
(D, xysp]

In the table above:
» xysp stand for one of the index register X, Y, SP, PC or PCR

Assembler 179

» Xxysstand for one of theindex register X, Y or SP
» abd stands for one of the accumulator A, B or D
Inherent

Instructions using this addressing mode have no operands or all operands are stored
in internal CPU registers. The CPU do not need to perform any memory access to
complete the instruction..

Example

NCP ; Instruction with no operand
CLRA ; The operand is in the CPU register A

Immediate

The opcode contains the value to use with the instruction rather than the address of
thisvalue. The character ‘# isused to indicate an immediate addressing mode oper-
and.

Example
mai n: LDAA #3564
LDX #S$AFE
BRA main

In this example, the hexadecimal value $64 isloaded in register A.

The size of the immediate operand is implied by the instruction context. The regis-
ter A isa8-bit register, so the instruction LDAA expect a 8-bit immediate operand.
Theregister X isa 16-bit register, so theinstruction LDX expect a 16-bit immediate
operand.

The immediate addressing mode can also be used to refer to the address of a sym-
bol.

Example
CRG $80
var 1: DC. B $45, $67
CRG $800
nai n:
LDX #varl
BRA main

In this example, the address of the variable ‘varl' ($80) isloaded in register X.
Be careful

One very common programming error is to omit the # character. This cause the

180 Assembler

assembler to misinterpret the expression as an address rather than an explicit data.
Example

LDAA $60
means load accumulator A with the value stored at address $60.

Direct

The direct addressing mode is used to address operands in the direct page of the
memory (location $0000 to $00FF).

This addressing mode is used to access operands in the address range $00 to $FF.
Access on this memory range (also called zero page) are faster and require less code
than the extended addressing mode (see below). In order to speed up his application
a programmer can decide to place the most commonly accessed data in this area of
memory.

Example

CRG $50

dat a: DS.B 1

My Code: SECTI ON

Entry:
LDS #$AFE ; init Stack Pointer
LDAA #3$01

mai n: STAA dat a
BRA mai n

In this example, the value in the register A is stored in the variable dat a which is
located at address $50.

Example

MDat a: SECTI ON SHORT

dat al: DS.B 1
XREF. B dat a2

My Code: SECTI ON

Entry:
LDS #$AFE ; init Stack Pointer
LDAA dat al

mai n: STAA dat a2
BRA mai n

Here datal is located in arelocatable section. To inform the assembler that this sec-
tion will be placed in the zero page, the SHORT qualifier after SECTION is used.
The label data2 is imported into this code. To inform the assembler that this label
can also be used with the direct addressing mode, the directive “XREF.B” is used.

Assembler 181

Extended

The extended addressing mode is used to access any memory location in the 64-
Kilobyte memory map.

Example

XDEF Entry
CRG $100

dat a: DS.B 1

M/Code: SECTI ON

Entry:
LDS #3$AFE ; init Stack Pointer
LDAA #3$01

nai n: STAA dat a
BRA mai n

In this example, the value in the register A is stored in the variable data. This vari-
ableislocated at address $0100 in the memory map.

Relative

This addressing mode is used to determine the destination address of branch
instructions. Each conditional branch instruction tests some bits in the condition
code register. If the bits are in the expected state, the specified offset is added to the
address of the instruction following the branch instruction, and execution continues
at that address.

Short branch instructions (BRA, BEQ, ...) expect a signed offset encoded on one
byte. The valid range for a short branch offset is[-128..127].

Example
nai n:
NCP
NCP
BRA mai n

In this example, after the two NOPs have been executed, the application branches
on the first NOP and continues execution.

Long branch instructions (LBRA, LBEQ, ...) expect a signed offset encoded on two
bytes. The valid range for along branch offset is[-32768..32767].

Using the special symbol for location counter, you can also specify a offset to the
location pointer astarget for a branch instruction. The* refer to the beginning of the
instruction where it is specified.

Example

182 Assembler

NCP
NCP
BRA *-2

In this example, after the two NOPs have been executed, the application branches at
offset -2 from the BRA instruction (i.e. on label ‘main’).

Inside of an absolute section, expressions specified in a PC relative addressing
mode may be:

« alabel defined in any absolute section

* alabel defined in any relocatable section

« an external label (defined in a X REF directive)

 an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in a PC relative addressing
mode may be:

« alabel defined in any absolute section

« alabel defined in any relocatable section

* an external label (defined in a X REF directive)

Indexed, 5-bit offset

This addressing mode add a 5-bit signed offset to the base index register to form the
memory address, which is referenced in the instruction. The valid range for a 5-bit
signed offset is[-16..15]. The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section " below.

This addressing mode may be used to access elementsin an n-element table, which
sizeis smaller than 16 bytes.

Example

ORG $1000

CST_TBL: DC B $5, $10, $18, $20, $28, $30
CRG $800

DATA TBL: DS. B 10

nmai n:
LDX #CST_TBL
LDAA 3, X

LDY #DATA TBL
STAA 8, Y

Assembler 183

The accumulator A isloaded with the byte value stored in memory location $1003
($1000 + 3).
Then the value of accumulator A is stored at address $808 ($800 + 8).

Indexed, 9-bit offset

This addressing mode add a 9-bit signed offset to the base index register to form the
memory address, which is referenced in the instruction. The valid range for a 9-bit
signed offset is[-256..255]. The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ! " below.

This addressing mode may be used to access elements in an n-element table, which
sizeis smaller than 256 bytes

Example

CRG $1000

CST_TBL: DC. B $5, $10, $18, $20, $28, $30, $38, $40, $48
DC B $50, $58, $60, $68, $70, $78, $80, $88, $90
DC B $98, $A0, $A8, $BO, $B8, $C(0, $C8, $DO, $08
CRG $800

DATA TBL: DS. B 40

mai n:
LDX #CST_TBL
LDAA 20, X

LDY #DATA TBL
STAA 18, Y

The accumulator A isloaded with the byte value stored in memory location $1014
($1000 + 20).
Then the value of accumulator A is stored at address $812 ($800 + 18).

Indexed, 16-bit offset

This addressing mode add a 16-bit offset to the base index register to form the
memory address, which is referenced in the instruction. The 16-bit offset may be
considered either as signed or unsigned ($FFFF may be considered to be -1 or
65'535). The base index register may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see
section ! " below.

Example

nmai n:

184 Assembler

LDX #$600
LDAA $300, X

LDY #$1000
STAA $140, Y

The accumulator A isloaded with the byte value stored in memory location $900
($600 + $300).
Then the value of accumulator A is stored at address$1140 ($1000 + $140).

Indexed, Indirect 16-bit offset

This addressing mode add a 16-bit offset to the base index register to form the
address of a memory location containing a pointer to the memory location refer-
enced in the instruction. The 16-bit offset may be considered either as signed or
unsigned ($FFFF may be considered to be -1 or 65'535). The base index register
may be X, Y, SP, PC or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see

section " below.
Example
CRG $1000
CST_TBL1: DC W $1020, $1050, $2001
CRG $2000
CST_TBL: DC. B $10, $35, $46
CRG $3000
nai n:
LDX #CST_TBL1
LDAA [4, X

The offset ‘4’ is added to the value of register ‘X’ ($1000) to form the address
$1004.

Then an address pointer ($2001) is read from memory at $1004.

The accumulator A isloaded with $35, the value stored at address $2001.

Indexed, pre-decrement

This addressing mode allow you to decrement the base register by a specified value,
before indexing takes place. The base register is decremented by the specified value
and the content of the modified base register is referenced in the instruction.

The valid range for a pre-decrement value is[1..8]. The base index register may be
X, Y, SP.

Example

Assembler 185

CRG $1000
CST_TBL: DC. B $5, $10, $18, $20, $28, $30
END TBL: DC. B $0

nai n:

CLRA

a.RB

LDX #END TBL
| oop:

ADDD 1, -X

CPX #CST_TBL

BNE | oop

The base register X is loaded with the address of the element following the table
CST_TBL ($1006).

Theregister X isdecremented by 1 (its value is $1005) and the value at this address
(%$30) is added to register D.

X is not equal to the address of CST_TBL, so it is decremented again and the con-
tent of address ($1004) is added to D.

This loop is repeated as long as the register X did not reach the beginning of the
table CST_TBL ($1000).

Indexed, pre-increment

This addressing mode allow you to increment the base register by a specified vaue,
before indexing takes place. The base register is incremented by the specified value
and the content of the modified base register is referenced in the instruction.

The valid range for a pre-increment value is [1..8]. The base index register may be
X, Y, SP.

Example
CRG $1000
CST_TBL: DC. B $5, $10, $18, $20, $28, $30
END TBL: DC. B $0
nai n:
aRA
CLRB
LDX #CST_TBL
| oop:
ADDD 2, +X
OPX #END TBL
BNE | oop

The baseregister X isloaded with the address of the table CST_TBL ($1000).
The register X isincremented by 2 (its value is $1002) and the value at this address

186 Assembler

($18) is added to register D.

X isnot equa to the address of END_TBL, so it is incremented again and the con-
tent of address ($1004) is added to D.

This loop is repeated as long as the register X did not reach the end of the table
END_TBL ($1006).

Indexed, post-decrement

This addressing mode allow you to decrement the base register by a specified value,
after indexing takes place. The content of the base register is read and then the base
register is decremented by the specified value.

The valid range for a pre-decrement value is[1..8]. The base index register may be
X,Y,SP

Example
CRG $1000
CST_TBL: DC. B $5, $10, $18, $20, $28, $30
END TBL: DC. B $0
nai n:
aRA
CLRB
LDX #END TBL
| oop:
ADDD 2, X-
OPX #CST_TBL
BNE | oop

The base register X is loaded with the address of the element following the table
CST_TBL ($1006).

The value at address $1006 ($0) is added to register D and the X is decremented by
2 (itsvalueis $1004).

X isnot equal to the address of CST_TBL, so the value at address $1004 is added to
D and X isdecremented by two again (its value is now $1002).

This loop is repeated as long as the register X did not reach the beginning of the
table CST_TBL ($1000).

Indexed, post-increment

This addressing mode allow you to increment the base register by a specified value,
after indexing takes place. The content of the base register is read and then the base
register isincremented by the specified value.

The valid range for a pre-increment value is[1..8]. The base index register may be

Assembler 187

X, Y, SP.
Example
CRG $1000
CST_TBL: DC B $5, $10, $18, $20, $28, $30
END_TBL: DC. B $0
nai n:
CLRA
a.RB
LDX #CST_TBL
| oop:
ADDD 1, X+
CPX #END TBL
BNE | oop

The base register X isloaded with the address of the table CST_TBL ($1000).

The value at address $1000 ($5) is added to register D and then the register X is
incremented by 1 (its value is $1001).

X is not equal to the address of END_TBL, so the value at address $1001 ($10) is
added to register D and then the register X isincremented by 1 (its value is $1002).
This loop is repeated as long as the register X did not reach the end of the table
END_TBL ($1006).

Indexed, Accumulator offset

This addressing mode add the value in the specified accumulator to the base index
register to form the address, which is referenced in the instruction. The base index
register may be X, Y, SP or PC. The accumulator may be A, B or D.

Example
nai n:
LDAB #%20
LDX #$600
LDAA B, X
LDY #$1000
STAA $140, Y

The value stored in B ($20) is added to the value of X ($600) to form a memory
address ($620). The value stored at $620 is loaded in accumulator A.
Indexed-Indirect, D Accumulator offset

This addressing mode add the value in D to the base index register to form the
address of a memory location containing a pointer to the memory location refer-

188 Assembler

enced in the instruction. The base index register may be X, Y, SP or PC.

Example
entryl: NCP
NCP
entry2: NCP
NCP
entry3: NCP
NCP
nai n:
LDD #2
JW [D PQ
got ol: DC Wentryl
got 02: DC Wentry2
got 03: DC Wentry3

This example is an example of jump table. The values beginning at gotol are poten-
tial destination for the jump instruction.

When JMP [D, PC] is executed, PC pointsto gotol and D holds the value 2.

The IMP instruction adds the value in D and PC to form the address of goto?2.

The CPU reads the address stored there (the address of the label entry2) and jump
there.

Indexed PC vs. Indexed PC Relative Addressing Mode

When using the indexed addressing mode with PC as base register, the macro
assembler allow you to use either Indexed PC (<offset>, PC) or Indexed PC Rela-
tive (<offset>, PCR) notation.

When Indexed PC notation is used, the offset specified in inserted directly in the
opcode.
Example
nai n:
LDAB 3, PC
DC B $20, $30, $40, $50

In the example above, the register B isloaded with the value stored at address PC +
3 ($50).

When Indexed PC Relative notation is used, the offset between the current location
counter and the specified expression is computed and inserted in the opcode.

Example

mai n:
LDAB x4, PCR

Assembler 189

x1: DC B $20
X2: DC. B $30
X3: DC. B $40
x4: DC B $50

In the example above, the register B is loaded with the value at stored at label ‘X4
($50). The macro assembler evaluates the offset between the current location
counter and the symbol ‘x4’ to determine the value, which must be stored in the
opcode.

Inside of an absolute section, expressions specified in an indexed PC relative
addressing mode may be:

« alabel defined in any absolute section

« alabel defined in any relocatable section

* an external label (defined in a XREF directive)
* an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in an indexed PC relative
addressing mode may be:

« alabel defined in any absolute section
« alabel defined in any relocatable section
« an externa label (defined in a XREF directive)

Comment Field

Thelast field in a source statement is an optional comment field. A semicolon (;) is
the first character in the comment field.

Example:

NCP ; Comment following an instruction

190 Assembler

Symbols

User Defined Symbols

Symbols identify memory locations in program or data sections in an assembly
module. A symbol has two attributes:

* The section, in which the memory location is defined

* The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the
section in which the labeled memory location is found. If the memory location is
located within arelocatable section (defined with the directive), the label
has a rel ocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data defini-
tion source line.

Example

Sec: SECTION

label1: DCB 2 ; labell is assigned offset O within Sec.
label2: DCB5 ; label2 is assigned offset 2 within Sec.
label 3: DCB 1 ; label3 is assigned offset 7 within Sec.

It is also possible to define a label with either an absolute or a previously defined
relocatable value, using a or directives.

Symbols with absolute values must be defined with constant expressions.

Example
Sec: SECTION
| abel 1: DC. B 2 ; labell is assigned offset O within Sec.
| abel 2: EQU 5 ; label 2 is assigned val ue 5.

label 3: EQU label 1 ; |abel3 is assigned the address of |abel 1.

External Symbols

A symbol may be made external using the directive. In another source file a
directives must reference it. Since its address is unknown in the referencing
file, it is considered to be relocatable.

Example

XREF ext Label ; synbol defined in an other nodul e.
; extLabel is inported in the current nodul e

Assembler 191

XDEF | abel ; synmbol is nmade external for other nodul es

; label is exported fromthe current nodul e
const Sec: SECTION

| abel : DC. W1, extLabel

Undefined Symbols

If alabel is neither defined in the source file, nor declared external using , the
assembler considersit to be undefined and generates an error.
Example;

codeSec: SECTION
entry:
NCP
BNE entry
NCP
JMP end

JMWP label ; <- Undeclared user defined synbol: |abel
end: RTS
END

Reserved Symbols

Reserved symbols cannot be used for user defined symbols.
Register names are reserved identifiers.
For the HC12 processor these reserved identifiers are:

A B OR D X Y, SP, PC PCR TEMPL, TEMP2.

Additionally, the keywords HIGH, LOW and PAGE are also a reserved identifier.
It is used to refer to the bits 16-23 of a 24-bit value.

Constants

The assembler supports integer and ASCI|I string constants:

Integer Constants

The assembler supports four representations of integer constants:

192 Assembler

« A decimal constant is defined by a sequence of decimal digits (0-9).
Example 5, 512, 1024

» A hexadecimal constant is defined by a dollar character ($) followed by a
sequence of hexadecimal digits (0-9, a-f, A-F).
Example $5, $200, $400

» An octal constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).
Example @5, @1000, @2000

» A binary constant is defined by a percent character followed by a sequence of
binary digits (0-1).
Example %101, %1000000000, %10000000000

The default base for integer constant isinitially decimal, but it can be changed using
the directive. When the default base is not decimal, decimal values cannot be
represented, because they do not have a prefix character.

String Constants

A string constant is a series of printable characters enclosed in single (‘) or double
guote (*). Double quotes are only allowed within strings delimited by single quotes.
Single quotes are only allowed within strings delimited by double quotes.

Example
'ABCD, "ABCD', 'A, "'B', "AB', 'A'B

Floating-Point Constants

The macro assembler does not support floating-point constants.

Operators
Operators recognized by the assembler in expressions are:
Addition and Subtraction Operators (binary)

Syntax

Addi ti on: <oper and> + <oper and>
Subtraction: <operand> — <operand>.

Assembler 193

Description

The + operator adds two operands, whereas the — operator subtracts them. The oper-
ands can be any expression evaluating to an absolute or relocatable expression.

Addition between two rel ocatable operands is not allowed.

Example
$A3216 + $42 ; Addition of two absol ute operands (= $A3258).
| abel - $10 ; Subtraction with value of ‘I abel’

Multiplication, Division and Modulo Operators (binary)

Syntax
Mul tiplication: <operand> * <operand>
D vi si on: <operand> / <operand>
Modul o: <oper and> % <oper and>
Description

The* operator multiplies two operands, the / operator performs an integer division
of the two operands and returns the quotient of the operation. The % operator per-
forms an integer division of the two operands and returns the remainder of the oper-
ation

The operands can be any expression evauating to an absolute expression. The sec-
ond operand in adivision or modulo operation cannot be zero.

Example
23 * 4 ; miltiplication (= $92).
23/ 4 ; division (= 5).
23 %4 ; renainder(= 3).

Sign Operators (unary)

Syntax

A us: +<oper and>
Mnus: - <oper and>

Description

The + operator do not change the operand, whereas the — operator changes the oper-

194 Assembler

and to its two's complement. These operators are valid for absolute expression
operands.

Example
+$32 (= $32).
-$32 ; (= $CE = -$32).

Shift Operators (binary)

Syntax
Shift left: <operand> << <count>
Shift right: <operand> >> <count>
Description

The << operator shifts its left operand left by the number of bytes specified in the
right operand.

The >> operator shiftsits left operand right by the number of bytes specified in the
right operand.

The operands can be any expression eval uating to an absolute expression.

Example
$25 << 2 ; shift left (= $94).
$A5 >> 3 ; shift right(= $14).

Bitwise Operators (binary)

Syntax
Bitw se AND: <operand> & <oper and>
Bitw se CR <operand> | <oper and>
Bitw se XCOR <operand> " <oper and>
Description

The & operator performs an AND between the two operands on bit level.
The | operator performs an OR between the two operands on bit level.
The " operator performs a X OR between the two operands on bit level.

The operands can be any expression eval uating to an absolute expression.

Assembler 195

Example
$E & 3 = $2 (%4110 & 90011 = 9%0010)
$E| 3 = $F (94110 | 99011 = 9%4111)
$E ~ 3 = $D (%4110 ~ 99011 = 9%4101)

Bitwise Operators (unary)

Syntax

e’ s conpl enent: ~<oper and>

Description
The ~ operator evaluates the one’s complement of the operand.

The operand can be any expression evaluating to an absol ute expression.

Example

~$C ; = $FFFFFFF3 (~9®0000000 00000000 00000000 00001100
=941111111 11211221 21122111 11110011)

Logical Operators (unary)

Syntax
Logi cal NOT: ! <operand>

Description
The! operator returns 1 (true) if the operand is O, otherwise it returns O (fal se).

The operand can be any expression evaluating to an absolute expression.

Example
1 (8<5) . = $1 (TRUE)

Relational Operators (binary)

Syntax

Equal : <operand> = <oper and>
<oper and> == <oper and>
Not equal : <oper and> ! = <oper and>

196 Assembler

<oper and> <> <oper and>

Less than: <operand> < <oper and>
Less than or equal : <oper and> <= <oper and>
QGeater than: <operand> > <oper and>

Qeater than or equal: <operand> >= <oper and>

Description

These operators compares the two operands and return 1 if the condition is ‘true’ or
0if the condition is ‘false’.

The operands can be any expression evaluating to an absolute expression.

Example
3>=4 =0 (FALSB
| abel = 4 =1 (TRUE) if label is 4, 0 (FALSE) otherwi se.
9 < $B =1 (TR

HIGH Operator

Syntax
H gh Byte: H GH <operand>)

Description

This operator returns the high byte of the address of amemory location.

Example:
Assumedat al isaword located at address $1050 in the memory.
LDAA #H GH dat al)

This instruction will load the immediate value of the high byte of the address of
dat al ($10) inregister A.

LDAA H GHdatal)

This instruction will load the direct value at memory location of the higher byte of
the address of dat al (i.e. the value in memory location $10) in register A.

Assembler 197

LOW Operator

Syntax
LONByte: LON <operand>)

Description

This operator returns the low byte of the address of a memory location.

Example:
Assumedat al isaword located at address $1050 in the memory.
LDAA #LONdat al)

This instruction will load the immediate value of the lower byte of the address of
dat al ($50) inregister A.

LDAA LOWdat al)

This instruction will load the direct value at memory location of the lower byte of
the address of dat al (i.e. the value in memory location $50) in register A.

PAGE Operator

Syntax
PACE Byte: PAGE(<operand>)

Description

This operator returns the page byte of the address of a memory location.

Example:
Assumedat al isaword located at address $28050 in the memory.
LDAA #PACE(dat al)

This instruction will load the immediate value of the page byte of the address of
dat al ($2).

LDAA PAGE(dat al)

Thisinstruction will load the direct value at memory location of the page byte of the
address of dat al (i.e. the value in memory location $2).

198 Assembler

Force Operator (unary)

Syntax

8-bit address: <<operand>
<oper and>. B

16-bit address: ><operand>
<oper and>. W

Description

The < or .B operators force the operand to be an 8-bit operand, whereasthe > or W
operators force the operand to be a 16-bit operand.

< operator may be useful to force the 8-bit immediate, 8-bit indexed or direct
addressing mode for an instruction.

> operator may be useful to force the 16-bit immediate, 16-bit indexed or extended
addressing mode for an instruction.

The operand can be any expression eva uating to an absolute or rel ocatable expres-
sion.

Example:
<l abel ; label is a 8-bit address.
| abel . B ; label is a 8-bit address.
>| abel ; label is a 16-bit address.
| abel . W ; label is a 16-bit address.

Operator Precedence

Operator precedence follows the rules for ANSI - C operators.

Operator Description Associativity
0 Parenthesis Right to Left
~ One's complement Left to Right
+ Unary Plus

- Unary minus

* Integer multiplication Left to Right
/ Integer division

% Integer modulo

Assembler 199

Operator Description Associativity

+ Integer addition Left to Right

- Integer subtraction

<< Shift Left Left to Right

>> Shift Right

< Lessthan Left to Right

<= Lessor equd to

> Greater than

>= Greater or equal to

=, == Equal to Left to Right

1=, <> Not Equal to

& Bitwise AND Left to Right

A Bitwise Exclusive OR Left to Right
Bitwise OR Left to Right

Expression

An expression is composed of one or more symbols or constants, which are com-
bined with unary or binary operators. Valid symbolsin expressions are:

* User defined symbols
 External symbols

» The specia symbol ‘*’ represents the value of the location counter at the begin-
ning of theinstruction or directive, even when several arguments are specified. In
the following example, the asterisk represents the location counter at the begin-
ning of the DC directive:

DCW 1, 2, *-2

Once a valid expression has been fully evaluated by the assembler, it is reduced as
one of the following type of expressions:

. : The expression has been reduced to an absolute value,
which is independent of the start address of any relocatable section. Thusitisa
constant.

. : The expression evaluates to an absolute offset

from the start of a single relocatable section.

» Complex relocatable expression: The expression neither evaluates to an abso-
lute expression nor to a simple relocatable expression. The assembler does not

200 Assembler

support such expressions.

All valid user defined symbols representing memory locations are simple relocat-
able expressions. This includes labels specified in XREF directives, which are
assumed to be relocatable symbols.

Absolute Expression

An absolute expression is an expression involving constants or known absolute
labels or expressions . An expression containing an operation between an absolute
expression and a constant value is also an absolute expression.

Exampl e of absolute expression:

Base: SET $100
Label : EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in
the same file and in the same section evaluate to an absolute expression. An expres-
sionas“l abel 2-1 abel 1" can betrandated as:

(<offset |abel 2> + <start section address >) —
(<offset |abel 1> + <start section address >)

This can be simplified as:

<of fset |abel 2> + <start section address > —
<of fset |abel 1> - <start section address>
= <of fset | abel 2> - <offset |abel 1>

Example

In the following example the expression “t abEnd- t abBegi n” evaluates to an
absolute expression, and is assigned the value of the difference between the offset
of t abEnd and t abBegi n in the section Dat aSec.

Dat aSec: SECTI ON
tabBegin: DS.B 5
t abEnd: DS.B 1

Const Sec: SECTI ON
| abel : EQU t abEnd- t abBegi n ; Absol ute expression

CodeSec: SECTION
entry: NCP

Assembler 201

Simple Relocatable Expression

A simple relocatable expression results from an operation like:

* <relocatable expression> + <absolute expression>
* <relocatable expression> - <absolute expression>
* < absolute expression> + < relocatable expression>

Example

XREF Xt rnLabel
Dat aSec: SECTI ON
tabBegin: DS.B 5
t abEnd: DS.B 1
CodeSec: SECTION

entry:
LDAA t abBegi n+2 ; Sinple relocatabl e expression
BRA *-3 ; Sinple rel ocatabl e expression
LDAA Xt rnLabel +6 ; Sinple relocatabl e expression

Unary Operation Result

The following table describes the type of an expression according to the operator in
an unary operation:

Operator Expression
-~ absolute absolute
-~ relocatable complex
+ absolute absolute
+ relocatable relocatable

Binary Operations Result

The following table describes the type of an expression according to the left and
right operatorsin a binary operation:

Operator L eft Operand Expression

absolute absolute absolute

202

Assembler

Operator L eft Operand Expression
- relocatable absolute relocatable
- absolute relocatable complex
- relocatable relocatable absolute
+ absolute absolute absolute
+ relocatable absolute relocatable
+ absolute relocatable relocatable
+ relocatable relocatable complex
* 1, %, <<,>>, |, &, absolute absolute absolute
* 1, %, <<, >> |, &, relocatable absolute complex
* 1, %, <<, >>, |, &, absolute relocatable complex
* 1%, <<,>>, |, &, relocatable relocatable complex

Translation Limits

The following limitations apply to the macro assembler:

* Floating-point constants are not supported.

» Complex relocatable expressions are not supported.

* Lists of operands or symbols must be separated with a comma.
* Include may be nested up to 50.

» The maximum line length is 1023.

Assembler 203

Assembler Directives

There are different class of assembler directives. The following tables gives you an
overview over the different directives and their class:

Directive Overview

Section Definition Directives

These directives are used to define new sections.

ORG Define an absolute section
SECTION Define arelocatable section
OFFSET Define an offset section

Constant Definition Directives

These directives are used to define assembly constants.

EQU Assign aname to an expression (cannot be redefined)
SET Assign anameto an expression (can be redefined)

Data Allocation Directives

These directives are used to allocate variables.

DC Define a constant variable

DCB Define a constant block

DS Define storage for avariable
RAD50 RADS50 encoded string constants

204 Assembler

Symbol Linkage Directives

These directives are used to export or import global symbols.

Directive Description

Specify the application entry point when an absolutefile
is generated

Make a symbol public (Visible from outside)

Import reference to an external symbol.

Import reference to an external symbol located on the
direct page.

Assembly Control Directives

These directives are general purpose directives used to control the assembly pro-
cess.

Directive Description

Define Alignment Constraint

Specify default base for constant definition

End of assembly unit
End of FOR block

Define 2 Byte alignment constraint

Generate user defined error or warning messages

Repeat assembly blocks

Include text from another file.

Define 4 Byte alignment constraint

Assembler 205

Listing File Control Directives

These directives controls the generation of the assembler listing file.

Directive Description

Specify if al instructions in a conditional assembly
block must be inserted in thelisting file or not.

Specify that all subsequent instructions must be inserted
inthelisting file.

Defineline length in assembly listing file.

Specify if the macro expansions must be inserted in the
listing file.

Specify that all subsequent instruction must not be
inserted in thelisting file.

Disable paging in the assembly listing file.

Insert page break.

Define page length in the assembler listing file.

Insert an empty line in the assembly listing file.

Define number of character to insert in the assembler
listing file for a TAB character.

Define the user defined title for the assembler listing
file.

Macro Control Directives

These directives are used for the definition, expansion of macros.

Directive Description

End of user defined macro.

Start of user defined macro.

Exit from macro expansion.

Conditional Assembly Directives

206

Assembler

These directives are used for conditional assembling.

Directive Description

alternate block

End of conditional block

Start of conditional block. A boolean expression follows
this directive.

Test if two string expressions are equal.

Test if asymbol is defined.

Test if an expressionisnull.

Test if an expression is greater or equal to 0.

Test if an expression is greater than 0.

Test if an expressionislessor equal to O.

Test if an expressionislessthan O.

Test if two string expressions are different.

Test if asymbol isundefined

Test if an expressionisnot null.

Assembler 207

ABSENTRY - Application Entry Point

Syntax:
ABSENTRY <l abel >

Synonym:
None

Description

This directive allow to specify the application Entry Point when the assembler gen-
erates directly an absolute file (the option ELF/DWARF 2.0 Absolute File
must be enabled).

Using this directive, the entry point of the assembly application is written in the
header of the generated absolute file. When this file is loaded in the debugger, the
line where the entry point label is defined is highlighted in the source window.

This directiveisignored, when the assembler generates an object file.

Note: Thisinstruction does only affect the loading on an application by a debugger. It
tells the debugger which initial PC should be used. In order to start the applica-
tion on a target, initialize the reset vector.

Example

If the example below is assembled using the -FA2 option, an Elf/Dwarf 2.0
Absolute file is generated.
ABSENTRY entry

CRG $fffe
Reset: DC Wentry
CRG $70
entry: NCP
NCP
mai n: LDS #$1FFF
NCP
BRA nai n

According to the ABSENTRY directive, the Entry Point will be set to the address of
entry in the header of the absolute file.

208 Assembler

ALIGN - Align Location Counter

Syntax:
ALl &N <n>

Synonym:

None

Description

This directive forces the next instruction to aboundary that isamultiple of <n>, rel-
aive to the start of the section. The value of <n> must be a positive humber
between 1 and 32767. The ALI GN directive can force alignment to any size. The
filling bytes inserted for alignment purpose are initialized with ‘\0'.

AL GN can be used in code or data sections.

Example

The following example aligns the HEX label to alocation, which isamultiple of 16
(in this case, location 00010 (Hex))

Assenbl er

Abs. Rel. Loc oj. code Source line
1 1
2 2 000000 6869 6768 DC. B "hi gh"
3 3 000004 0000 0000 ALI CN 16

000008 0000 0000
00000C 0000 0000

000010 7F HEX DC B 127 ; HEX is allocated
; on an address,
; whichis a
; multiple of 16.

©O©oo~NO Ol A~
©O©oo~NO U~

Assembler 209

BASE - Set Number Base

Syntax:
BASE <n>

Synonym:
None

Description

The directive sets the default number base for constants to <n>. The operand <n>
may be prefixed to indicate its number base; otherwise, the operand is considered to
be in the current default base. Valid values of <n> are 2, 8, 10, 16. Unless a default
base is specified using the BASE directive, the default number base is decimal.

Example
4 4 base 10 ; default base: deci nal
5 5 000000 64 dc.b 100
6 6 base 16 ; default base: hex.
7 7 000001 OA dc.b Oa
8 8 base 2 ; default base: binary
9 9 000002 04 dc. b 100
10 10 000003 04 dc.b 2%4.00
11 11 base @2 ; default base: decinal
12 12 000004 64 dc. b 100
13 13 base $a ; default base: deci nal
14 14 000005 64 dc. b 100
15 15
16 16 base 8 ; default base: octal
17 17 000006 40 dc.b 100

Be careful

Even if the base valueis set to 16, hexadecimal constants terminated by a‘D’ must
be prefixed by the $ character, otherwise they are supposed to be decimal constants
in old style format. For example, constant 45D is interpreted as decimal constant
45, not as hexadecimal constant 45D.

210 Assembler

CLIST - List Conditional Assembly

Syntax:
QLIST [N | COFF]

Synonym:

None

Description

The CLI ST directive controls the listing of subsequent conditional assembly
blocks. It precedes the first directive of the conditiona assembly block to which it
applies, and remains effective until the next CLI ST directiveis read.

When the ON keyword is specified in a CLI ST directive, thelisting file includes all
directives and instructions in the conditional assembly block, even those which do
not generate code (which are skipped).

When the OFF keyword is entered, only the directives and instructions that gener-
ates code are listed.

A soon as the option —L is activated, the assembler defaultsto CLI ST ON.

Example
Listing file with CLIST OFF

CLI ST CFF
Try: EQU O
IFEQ Try
LDAA #103
ELSE
LDAA #0
ENDI F

The corresponding listing fileis:

Abs. Rel. Loc (bj. code Source line
2 2 0000 0000 Try: EQU O
3 3 0000 0000 IFEQ Try
4 4 000000 8667 LDAA #103
5 5 ELSE
7 7 ENDI F

Assembler

211

Listing filewith CLI ST ON

When assembling the code:

Try:

CLI ST ON
EQU O
IFEQ Try
LDAA #103
ELSE
LDAA #0
ENDI F

The corresponding listing fileis:

HC12- Assenbl er

0000 0000
0000 0000
000000 8667

~NOoO O~ WN

Source line

EQU O
IFEQ Try
LDAA #103
ELSE
LDAA #0
ENDI F

212 Assembler

DC - Define Constant

Syntax:
[<label >:] DC|[.<size>] <expression> [, <expression>]...

where <size> = B (default), Wor L.

Synonym:

DCW(= 2 byte DC's), DL (= 4 byte DC s), FOB (= DC. B), FDB (== 2 byte
DCs), FQB (= 4 byte DC s)

Description

The DC directive defines constants in memory. It can have one or more <expr es-
si on> operands, which are separated by commas. The <expr essi on> can con-
tain an actual value (binary, octal, decimal, hexadecimal or ASCII). Alternatively,
the <expr essi on> can be a symbol or expression that can be evaluated by the
assembler as an absolute or simple relocatable expression. One memory block is
alocated and initialized for each expression.

The following rules apply to size specifications for DC directives:

» DC.B: One byte is dlocated for numeric expressions. One byte is allocated per
ASCII character for strings.

« DC.W: Two bytes are allocated for numeric expressions. ASCII strings are right
aligned on a two-byte boundary.

» DC.L: Four bytes are allocated for numeric expressions. ASCI| strings are right
aligned on afour byte boundary

Example for DC.B:

000000 4142 4344 Label : DC B "ABCDE
000004 45
000005 OAOA 010A DC. B %4010, @2, 1, %A

Example for DC.W:

000000 0041 4243 Label : DC W"ABCDE

000004 4445

000006 O0OA O00A DC. W%010, @2, 1, $A
00000A 0001 O0OA

Assembler

213

00000E xxxx

Example for DC.L:

000000 0000
000004 4243
000008 0000
00000C 0000
000010 0000
000014 0000
000018 xxxx

0041
4445
000A
000A
0001
000A
XXXX

Label :

DC. W Label

DC L "ABCDE'

DC L %4010, @2, 1, $A

DC L Label

If the value in an operand expression exceeds the size of the operand, the value is
truncated and a warning message is generated.

See also

214 Assembler

DCB - Define Constant Block

Syntax:
[<label >:] DCB [.<size>] <count> <val ue>

where <size> = B (default), Wor L.

Description

The DCB directive causes the assembler to alocate amemory block initialized with
the specified <val ue>. Thelength of theblock is<si ze> * <count >.

<count > may not contain undefined, forward, or external references. It may range
from 1 to 4096.

The value of each storage unit allocated is the sign-extended expression <val ue>,
which may contain forward references. The <count > cannot be relocatable. This
directive does not perform any alignment.

The following rules apply to size specifications for DCB directives:

« DCB.B: Onebyteisalocated for numeric expressions.
» DCB.W: Two bytes are allocated for numeric expressions.
» DCB.L: Four bytes are allocated for numeric expressions.

Example
000000 FFFF FF Label : DB. B 3, $FF
000003 FFFE FFFE DOB. W3, $FFFE
000007 FFFE
000009 0000 FFFE DCB. L 3, $FFFE

00000D 0000 FFFE
000011 0000 FFFE

See also

Assembler 215

216 Assembler

DS - Define Space

Syntax:
[<label >:] DS |[.<size> <count>

where <size> = B (default), Wor L.

Synonym:
RVB (= DS.B)
RWD (2 bytes)
RVD (4 bytes)

Description

The DS directive is used to reserve memory for variables. The content of the mem-
ory reserved isnot initialized. The length of theblock is<si ze> * <count >,

<count > may not contain undefined, forward, or external references. It may range
from 1to 4096.

Example

Counter: DS.B 2 ; 2 continuous bytes in nenory
DS.B 2 ; 2 continuous bytes in nemory

; can only be accessed trough the |abel Counter
DS.W 5 ; 5 continuous words in nemory

Thelabel ‘Count er ' references the lowest address of the defined storage area.

Note: Sorage allocated with a DS directive may end up in constant data section or
even in a code section, if the same section contains constants or code as well.
The assembler allocates only a complete section at once.

Example:
How it shoul d NOT be done ...
Count er: bS 1 ; 1 byte space
Initial Counter: DC. B $f5 ; constant $f5
mai n: NCP ; NCP instruction

In the example code above, avariable, a constant and code are put
into the same section. Because code has to be in ROM, dl 3 ele-
ments are put into ROM. In order to allocate them separately, put
them in different sections:

Assembler

217

See also

; How it should be done ...

Dat aSecti : SECTION ; section for variables
Count er: bS 1 ;1 byte space
Const Sect : SECTION ; section for constants

Initial Counter: DC. B $f5 ; constant $f5

CodeSect : SECTION ; section for code
mai n: NCP ; NCP instruction

An ORG directive does also start a new section.

218 Assembler

ELSE - Conditional Assembly

Syntax:

IF <condition>
[<assenbl y | anguage st at enent s>]

[ELSEH]
[<assenbl y | anguage st at errent s>]
ENDI F

Synonym:
ELSEC

Description

If <condi ti on> istrue, the statements between | = and the corresponding EL SE
directive are assembled (generate code).

If <condi ti on> is false, the statements between ELSE and the corresponding

directive are assembled. Nesting of conditional blocksis allowed. The max-
imum level of nesting is limited by the available memory at assembly time.
Example

The following is an example of the use of conditiona assembly directives:

Try: EQU1
IF Try I=0
LDAA #103
ELSE
LDAA #0
ENDI F

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #103" instruction is assembled. Changing the operand of the
“equ” directive to one causes the “Idaa #0” instruction to be assembled instead.
The following shows the listing provided by the assembler for these lines of code:

Abs. Rel. Loc oj. code Source line
1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try !'=0
3 3 000000 8667 LDAA #103
4 4 ELSE

Assembler 219

220 Assembler

END - End Assembly

Syntax:
END

Synonym:

None

Description

The END directive indicates the end of the source code. Subsequent source state-
mentsin this file are ignored. The END directive in included files skips only subse-
quent source statementsin thisinclude file. The assembly continuesin theincluding
filein aregular way.

Example
Source File
Label: DCW $1234
DC. W $5678
END

DC W $90AB ; no code generated
DC W $CDEF ; no code generated

Generated listing file
Abs. Rel. Loc (bj. code Source line

1 1 000000 1234 Label: DCW $1234
2 2 000002 5678 DCW $5678

Assembler

221

ENDFOR - End of FOR block

Syntax:
ENDFCR

Synonym:
None
Description
The ENDFOR directive indicates the end of a FOR block.

Note: The FOR directiveis only available when the assembly
used. By default, the FOR directive is not supported.

Example

see example of directive

See also

222 Assembler

ENDIF - End Conditional Assembly

Syntax:
ENDI F

Synonym:
ENDC

Description

The ENDI F directive indicates the end of a conditional block. Nesting of condi-
tional blocks is alowed. The maximum level of nesting is limited by the available
memory at assembly time.

Example

see example of directive

Assembler 223

ENDM - End Macro Definition

Syntax:
ENDM

Synonym:
None

Description

The ENDMdirective terminates the macro definition.

Example
cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM

Dat aSec: SECTI ON
char 1: DS 1
char 2: DS 1
CodeSec: SECTI ON
Start:
cpChar charl, char2

224 Assembler

EQU - Equate Symbol Value

Syntax:

<l abel >: EQU <expr essi on>

Synonym:

None

Description

The EQU directive assigns the value of the <expr essi on> in the operand field
to <l abel >. The <l abel > and <expr essi on> fields are both required, and
the <l abel > cannot be defined anywhere else in the program. The <expr es-
si on> cannot include a symbol, which is undefined or not defined yet.

The EQU directive does not allow forward references.

Example
0000 0014 MaxH erent: EQJU 20
0000 0050 MaxSi ze: EQU MaxH enent * 4
000000 Ti ne: DS.B 3

0000 0000 Hour: EQU Time ; first byte addr.
0000 0002 Mnute: EQUJ Ti me+l; second byte addr
0000 0004 Second: EQU Time+2; third byte addr

Assembler 225

EVEN - Force Word Alignment

Syntax:
EVEN

Synonym:
None

Description

Thisdirective forces the next instruction to the next even address relative to the start
of the section. EVEN s an abbreviation for 2. Some processors require word
and long word operations to begin at even address boundaries. In such cases, the use
of the EVEN directive ensures correct alignment, omission of the directive can
result in an error message.

Example

Abs. Rel. Loc (bj. code Source line
1 1 000000 ds.b 4
2 2 ; location count has an even val ue
3 3 ; nho padding byte inserted.
4 4 even
5 5 000004 ds.b 1
6 6 ; location count has an odd val ue
7 7 ; one paddi ng byte inserted.
8 8 000005 even
9 9 000006 ds.b 3
10 10 ; location count has an odd val ue
11 1 ; one paddi ng byte inserted.
12 12 000009 even

[y
w
=
w

0000 OOOA aaa: equ 10

226 Assembler

FAIL - Generate Error Message

Syntax:

FAIL <arg> | <string>

Synonym:
None

Description
The FAI L directive comes in three flavors, depending on the operand specified:

« |f <arg> isanumber in the range [0— 499], the assembler generates an error mes-
sage, including the line number and argument of the directive. The assembler
does not generate an object file.

* If <ar g> is anumber in the range [500-$FFFFFFFF], the assembler generates a
warning message, including the line number and argument of the directive.

 If astring is supplied as operand, the assembler generates an error message,
including the line number and the <st r i ng>. The assembler does not generate
any object file.

The FAI L directive is primarily intended for use with conditional assembly, to
detect user defined errors or warning conditions.

Example:
The following portion of code:

cpChar: MACRO
IFC "\ 1", ""
FAIL 200
MEXI T
ELSE
LDAA \ 1
ENDI F

IFC "\2", ""
FAI L 600
ELSE
STAA\ 2
ENDI F
ENDM

Assembler 227

codSec: SECTI ON
Start:

cpChar charl

Generates the following error message:
>> in "C\metrowerks\demo\warnfail.asni, line 13, col 19, pos 226
IFC "\2", "
FAI L 600

N

WARNI NG A2332: FAI L found
Macro Call : FAI L 600

The following portion of code:

cpChar: MACRO
IFC "\ 1",
FAI L 200
MEXI T
ELSE
LDAA \ 1
ENDI F

IFC "\ 2",
FAI L 600
ELSE
STAA \ 2
END F
ENDM
codeSec: SECTION
Start:
cpChar , char?2

Generates the following error message:

>> in "C\metrowerks\demo\errfail.asn¥, line 6, col 19, pos 96

IFC "\ 1",
FAI L 200
N

ERRCR A2329: FAIL found
Macro Call : FAI L 200

The following portion of code:

cpChar: MACRO
IFC "\ 1", ""

228 Assembler

FAIL "A character nust be specified as first paraneter"”
MEXI T

ELSE
LDAA \ 1

ENDI F

IFC "\ 2", "
FAI L 600
ELSE
STAA \ 2
ENDI F
ENDM
codeSec: SECTI N
Start:
cpChar , char2

Generates the following error message:

>>in "C\metrowerks\deno\failnes.asn?, line 7, col 17, pos 110

[FC "\ 1", "
FAIL "A character nust be specified as first paraneter"”
N
ERRCR A2338: A character nust be specified as first paraneter
Macro Call @ FAIL "A character nust be specified as first paraneter"

Assembler 229

FOR - Repeat assembly block

Syntax:

FAIL <arg> | <string>

Synonym:
None

Description

The FOR directive is an inline macro, since it can generate multiple lines of assem-
bly code from only one line of input code.

FOR takes an absolute expression and assembles the portion of code following it,
the number of time represented by the expression. The FOR expression may be
either a constant or alabel previously defined using EQU or SET.

Note: The FOR directive is only available when the assembly is
used. By default, the FOR directive is not supported.

Example:
FCR | abel =2 TO 6
DC B | abel *7
ENDFCR

Following code is generated by the above source:

Abs. Rel. Loc (bj. code Source line

1 1 FCR | abel =2 TO 6
2 2 DC B | abel *7
3 3 ENDFCR
4 2 000000 OE DC B | abel *7
5 3 ENDFCR
6 2 000001 15 DC B | abel *7
7 3 ENDFCR
8 2 000002 1C DC B | abel *7
9 3 ENDFCR

10 2 000003 23 DC B | abel *7

11 3 ENDFCR

12 2 000004 2A DC B | abel *7

13 3 ENDFCR

230

Assembler

See also
Directive ENDFOR
Option -Compat

Assembler 231

IF - Conditional Assembly

Syntax:

I F <condi tion>
[<assenbl y | anguage st at ement s>]

[ELSH
[<assenbl y | anguage st at ement s>]
ENDI F
Synonym:

None

Description

If <condi ti on> is true, the statements immediately following the | F directive
are assembled. Assembly continues until the corresponding or direc-
tiveisreached. Then al the statements until the corresponding ENDI F directive are
ignored. Nesting of conditiona blocksis alowed. The maximum level of nesting is
limited by the available memory at assembly time.

The expected syntax for <condi ti on>is:

<condi tion> : = <expression> <rel ati on> <expressi on>

<relation> := "=" | "I=" | " >= | "> | "<=" | "<" | "<
The <expression> nust be absolute (It nust be known at assenbly
time).

Example

The following is an example of the use of conditional assembly directives:

Try: EQU O
IF Try !'=0
LDAA #103
ELSE
LDAA #0
ENDI F

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #0" instruction is assembled. Changing the operand of the “equ”
directive to one causes the “ldaa #103" instruction to be assembled instead. The

232

Assembler

following shows the listing provided by the assembler for these lines of code:

O~ BADNDPR

O~ BADNDBR

0000 0000
0000 0000

000000 8667

Try:

EQU O
IF Try '=0
ELSE

LDAA #103
ENDI F

Assembler 233

IFcc - Conditional Assembly

Syntax:

| Fcc <condi ti on>

[<assenbl y | anguage st at enent s>]
[ELSEH]

[<assenbl y | anguage st at enent s>]
END F

Synonym:
None

Description

These directives can be replaced by the | F directivel f cc <condi ti on> istrue,
the statements immediately following the | f cc directive are assembled. Assembly
continues until the corresponding or directive is reached, after which
assembly moves to the statements following the ENDI F directive. Nesting of condi-
tiona blocksis allowed. The maximum level of nesting is limited by the available
memory at assembly time.

The following table lists the available conditional types:

Ifcc Condition Meaning

ifeq <expression> if <expression>==0
ifne <expression> if <expression>!=0

iflt <expression> if <expression><0

ifle <expression> if <expression><=0

ifgt <expression> if <expression>>0

ifge <expression> if <expression>>=0

ifc <stringl>, <string2> if <stringl> == <string2>
ifnc <stringl>, <string2> if <stringl> != <string2>
ifdef <label> if <label> was defined
ifndef <label> if <label> was not defined

234 Assembler

Example
The following is an example of the use of conditiona assembly directives:

Try: EQUO
IFNE Try
LDAA #103
ELSE
LDAA #0
ENDI F

The value of Try determines the instruction to be assembled in the program. As
shown, the “ldaa #0" instruction is assembled. Changing the directive to “IFEQ”
causes the “ldaa #103” instruction to be assembled instead. The following shows
thelisting provided by the assembler for these lines of code:

1 1 0000 0000 Try: EQU O
2 2 0000 0000 IFNE Try
4 4 ELSE
5 5 000000 8600 LDAA #0
6 6 ENDI F

Assembler 235

INCLUDE - Include Text from Another File

Syntax:
INCLUDE <file specification>

Synonym:
None

Description

This directive causes the included file to be inserted in the source input stream. The
<file specification>isnot casesensitive, and must be enclosed in quota
tion marks.

The assembler attempts to open <fi |l e speci fi cati on> relative to the cur-
rent working directory. If thefileisnot found there, then it is searched for relative to
each path specified in the environment variable

Example

I NCLUDE ". .\ LI BRARY\ nacros. i nc"

236 Assembler

LIST - Enable Listing

Syntax
LI ST

Synonym:

None

Description

Specifies that the following instructions must be inserted in the listing and in the
debug file. This option is selected by default. Thelisting fileis only generated if the
is specified on the command line.

The source text following the L1 ST directiveislisted until a or an is
reached

Thisdirective is not written to the listing and debug file.

Example:
The following portion of code:
aaa: NCP

bbb: NCP
ccc: NCP

ddd: NCP

generates the following listing file:

Abs. Rel. Loc oj. code Source line
1 1 000000 A7 aaa NCP
2 2
4 4 000001 A7 bbb NCP

Assembler

237

5 5 000002 A7
6 6

12 12 000005 A7
13 13 000006 A7

See Also

ddd:

238 Assembler

LLEN - Set Line Length

Syntax:
LLEN <n>

Synonym:

None

Description

Sets the number of characters from the source line that are included on the listing
lineto <n>. The values allowed for <n> areintherange[0 — 132] . If avalue
smaller than O is specified, the line length is set to 0. If avalue bigger than 132 is
specified, theline length is set to 132.

Lines of the source file that exceed the specified number of characters are truncated
inthelisting file.
Example:

The following portion of code:

DC B $55

LLEN 32

DC W $1234, $4567
LLEN 24

DCW $1234, $4567
EVEN

generates the following listing file:

Abs. Rel. Loc (bj. code Source line

1 1 0000005 DcB 855
421 421 000001 1234 4567 DC W $1234, $4567
? 3 000005 1234 4567 DC W $1234, $
8 8 000009 00 EVEN

Assembler 239

LONGEVEN - Forcing Long-Word Alignment

Syntax:
LONGEVEN
Synonym:
None
Description
This directive forces the next instruction to the next long-word address relative to
the start of the section. LONGEVEN is an abbreviation for 4.
Example
2 2 000000 01 dcb.b 1,1
; location counter is not a nultiple of 4, 3 filling
; bytes are required.
3 3 000001 0000 00 | ongeven
4 4 000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4, no filling

; bytes are required.

5 5 | ongeven

6 6 000008 0202 dcb.b 2,2

7 7 ; following is for text section

8 8 s27 SECTI ON 27

9 9 000000 9D nop
; location counter is not a nultiple of 4, 3 filling
; bytes are required.

10 10 000001 0000 00 | ongeven

11 11 000004 9D nop

240 Assembler

MACRO - Begin Macro Definition

Syntax:
<l abel >: MACRO

Synonym:

None

Description

The <l abel > of the MACRO directive is the name by which the macro is called.
This name must not be a processor machine instruction or assembler directive
name. For more information on macros, see the chapter.

Example

XDEF Start
MData: SECTION
char 1: DS.B 1
char 2: DS.B 1
cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM
CodeSec: SECTI QN
Start:
cpChar charl, char2

Assembler

241

MEXIT - Terminate Macro Expansion

Syntax:
MEXI T

Synonym:
None

Description

MEXI T is usually used together with conditiona assembly within a macro. In that
case it may happen that the macro expansion should terminate prior to termination
of the macro definition. The MEXI T directive causes macro expansion to skip any
remaining source lines ahead of the directive.

Example

The following portion of code:

st or age:

save:

dat Sec:
char1:
char 2:

codSec:
entry:

XDEF entry

EQU $00FF

MACRO ; Start macro definition

LDX #storage

LDAA \ 1

STAA 0,x ;save first arg

LDAA \2

STAA 2,x ;save second arg

IFC '\3, '"'";is there a 3rd arg?
MEXI T ; no, exit from nacro.

ENDC

LDAA \3 ; save third arg

STAA 4, X

ENDM ; End of macro definition

SECTI ON
ds.b 1
ds.b 1
SECTI ON

save charl, char2

242

Assembler

generates the following listing file:

HC12- Assenbl er

0000 00

000000
000001

000000 CE OOFF
000003 B6 xxxx
000006 6A00
000008 B6 xxxx
00000B 6A02

code

FF

S

+ 4+ + + o+

0000 0001 +

+

+
+

+

Source line

st or age:

ave:

dat Sec:
char 1:
char 2:

codSec:
entry:

XDEF entry
EQU $00FF

MACRO ; Start macro definition
LDX #storage
LDAA \1
STAA 0,x ;save first arg
LDAA \2
STAA 2,x ;save second arg

IFC '\3, '"";is there a 3rd arg?
MEXI T ; no, exit fromnacro.
ENDC

LDAA \3 ; save third arg
STAA 4, X

ENDM ; End of macro definition

SECTI ON
ds.b 1
ds.b 1

SECTI ON

save charl, char2

LDX #st orage

LDAA charl

STAA 0, x ; save first arg

LDAA char2

STAA 2,x ; save second arg
IFC '', "' ;is there a 3rd arg?

MEXI T ;no, exit frommacro.

ENDC
LDAA ; save third argunent
STAA 4, X

Assembler 243

MLIST - List Macro Expansions

Syntax:
M.IST [ON | OFF]

Description

When the ON keyword is entered with an M_I ST directive, the assembler includes
the macro expansions in the listing and in the debug file.

When the OFF keyword is entered, the macro expansions are omitted from the list-
ing and from the debug file.

Thisdirectiveis not written to the listing and debug file, and the default value is ON.

Synonym:
None
Example
For the following code, with MLI ST QON,
XDEF entry
M.I ST ON
swap: MACRO
LDD \1
LDX \2
SID \2
STX \1
ENDM
codSec: SECTICON
entry:
LDD #$F0
LDX #$0F
mai n
STD first
STX second
swap first, second
NCP
BRA main

dat Sec: SECTI CN
first: DSBW 1
second: DS W 1

244

Assembler

the assembler listing fileis:

HC12- Assenbl er

000000 CC 00FO
000003 CE O0OF

000006 7C xxxx
000009 7E xxxx

00000C FC xxxx
00000F FE xxxx
000012 7C xxxx
000015 7E xxxx
000018 A7
000019 20EB

000000
000002

Source line

XDEF entry
swap: MACRO
LD \1
LDX \2
STID \2
STX \1
ENDM

codSec: SECTI ON
entry:
LDD #3$F0
LDX #$OF

STD first

STX second

swap first,

+ + + +

NCP

BRA main
dat Sec: SECTI ON
first: DBW 1
second: DS W 1

For the same code, with MLI ST OFF, thelisting fileis:
HC12- Assenbl er

000000 CC 00F0
000003 CE O0OF

Source line

XDEF entry
swap: MACRO
LD \1
LDX \2
SID \2
STX \1
ENDM

codSec: SECTI ON
entry:
LDD #3$FO
LDX #3$0F

LDD first
LDX second
STD second
STX first

Assembler

245

14
15
16
21
22
23
24
25

14
15
16
17
18
19
20
21

000006 7C xxxx
000009 7E xxxx

000018 A7
000019 20EB

000000
000002

dat Sec:
first:
second:

SID first
STX second
swap first,
NCP

BRA min
SECTI ON

DS W 1
DSSW 1

second

The MLI ST directive does not appear in the listing file. When a macro is called
after aMLI ST ON, it isexpanded in the listing file. If the MLl ST OFF is encoun-
tered before the macro call, the macro is not expanded in thelisting file.

246 Assembler

NOLIST - Disable Listing

Syntax:
NCLI ST

Synonym:
NCL

Description

Suppresses the printing of the following instructions in the assembly listing and
debug file until a directiveis reached.

Example
The following portion of code:

aaa: NCP

bbb: NCP
ccc: NCP

ddd: NCP

generates the following listing file:

HC12- Assenbl er

Abs. Rel. Loc (bj. code Source line
1 1 000000 A7 aaa: NCP
2 2
4 4 000001 A7 bbb: NCP
5 5 000002 A7 NCP
6 6
12 12 000005 A7 ddd: NCP
13 13 000006 A7 NCP

Assembler 247

See Also
LI ST Directive

248 Assembler

NOPAGE - Disable Paging

Syntax:
NCPACGE

Synonym:
None
Description

Disables pagination in thelisting file. Program lines are listed continuously, without
headings or top or bottom margins.

Assembler 249

OFFSET - Create Absolute Symbols

Syntax:

CFFSET <expr essi on>

Synonym:
None

Description

The OFFSET directive declares an offset section and initializes the location counter
to the value specified in <expr essi on>. The<expr essi on> must be absolute
and may not contain references to external, undefined or forward defined labels.

An offset section is useful to simulate data structures or a stack frame.

Example:

The following example shows how you can use the OFFSET directive to access ele-
ments of a structure.

CFFSET 0
1D DS.B 1
COUNT: DSW 1
VALUE DS L 1

Sl ZE EQU *

Dat aSec: SECTI ON
Struct: DS. B SIZE

CodeSec: SECTION

entry:
LDX #Struct
LDAA #0
STAA ID X
INC CGOWNT, X
| NCA
STAA VALUE, X

When a statement affecting the location counter other than EVEN, LONGEVEN,
ALIGN or DS is encountered after the OFFSET directive, the offset section is
ended up. The preceding section is activated again, and the location counter is
restored to the next available location in this section.

250 Assembler
Example:
Abs. Rel Loc (bj. code Source line
1 1 CFFSET 0
2 2 000000 1D bsB 1
3 3 000001 QOUNT: Dsw 1
4 4 000003 VALUE: DsL 1
5 5 0000 0007 SIZE EQU *
6 6
7 7 Dat aSec: SECTION
8 8 000000 Struct: DS.B SIZE
9 9
10 10 CodeSec: SECTICN
11 11 entry:
12 12 000000 CExx xx LDX #Struct
13 13 000003 8600 LDAA #0
14 14 000005 6A00 STAA ID X
15 15 000007 6201 INC CONT, X
16 16 000009 42 | NCA
17 17 00000A 6A03 STAA VALUE, X
I'n the exanpl e above, the synbol ‘cst3', defined after the CFFSET

directive, defines a constant byte value. This synbol is appended to
the section ‘ GConst Sec’, which precedes the CFFSET directive.

Assembler 251

ORG - Set Location Counter

Syntax:

CORG <expr essi on>

Synonym:
None

Description

The ORG directive sets the location counter to the value specified by <expr es-

si on>. Subsequent statements are assigned memory locations starting with the
new location counter value. The <expr essi on> must be absolute and may not
contain any forward, undefined, or external references. The ORG directive generates

an internal section, which is absolute (see the chapter).
Example
org $2000
bl: nop
b2: rets
Label bl islocated at address $2000 and label b2 at address $2001:
Abs. Rel Loc (bj. code Source line
1 1 org $2000
2 2 a002000 A7 bl: nop
3 3 a002001 3D b2: rts

See also

252 Assembler

PAGE - Insert Page Break

Syntax:
PAGE

Synonym:

None

Description

Insert a page break in the assembly listing.

Example
The following portion of code:

code: SECTI ON
DC B $00, $12
DC. B $00, $34
PAGE
DC B $00, $56
DC. B $00, $78

generates the following listing file:

Abs. Rel. Loc (bj. code Source line
1 1 code SECTI ON
2 2 000000 0012 OC B $00, $12
3 3 000002 0034 OC B $00, $34
Abs. Rel Loc (bj. code Source line
5 5 000004 0056 DC B $00, $56

6 6 000006 0078 DC B $00, $78

Assembler 253

PLEN - Set Page Length

Syntax:
PLEN <n>

Synonym:
None

Description

Setsthelistings page length to <n> lines. <n> may range from 10 to 10000. If the
number of lines already listed on the current page is greater than or equal to <n>,
listing will continue on the next page with the new page length setting.

The default page length is 65 lines.

254 Assembler

RADS50 - Rad50 encoded string constants

Syntax:
RADGO <str>[, cnt]

Synonym:

None

Description

This directive places strings encoded with the RAD50 encoding into constants. The
RAD50 encoding does place 3 string characters out of a reduced character set into 2
bytes. It therefore saves memory when comparing it with a plain ASCII representa-
tion. It also has some drawbacks, however. The only 40 different character vaues
are supported and the strings have to be decoded before they can be used. This
decoding does include some computations including divisions (not just shifts) and
istherefore rather expensive.

The encode takes three bytes, looks them up in a string table.

unsi gned short LookWpPos(char x) {
static const char translate[]=
" ABCDEFCH JKLMNCPCRSTUWAKYZS$. ?0123456789";
const char* pos= strchr(translate, Xx);
if (pos == NULL) { EncodingError(); return O; }
return pos-translate;

}

unsi gned short Encode(char a, char b, char c) {
return LookUpPos(a)*40*40 + LookUpPos(b)*40 + LookUpPos(c);
}

If the remaining string is shorter than 3 bytes, it is filled with spaces (which corre-
spond to the RAD50 character 0).

The optional argument cnt can be used to explicitly state how many 16 bit values
should be written. If the string is shorter than 3*cnt, then it is filled with spaces.

See the example C code below how to decodeit.

Example:

The datain the following file:

Assembler 255

XDEF rad50, rad50Len
Dat aSection SECTI ON
rad50:
RADG0 "Hell o Worl d"
rad50Len: EQU (*-rad50)/2

assembles to the following data:
$32D4 $4D68 $922A $4BAD

This C code takes the data and actually prints “Hello World”:

#i ncl ude "stdio. h"

extern unsigned short rad50[];

extern int rad50Len; /* address is value. Exported asml abel */
#define rad50l en ((int) & ad50Len)

voi d printRadChar (char ch) {
static const char translate[]=
" ABCDEFGH JKLMNCPQRSTUWAKYZS$. ?0123456789";
char asciiChar= transl ate[ch];
(voi d) put char (asci i Char);

}
void PrintHall o(void) {
unsi gned char val ues= rad50l en;
unsi gned char i;
for (i=0; i < values; i++) {
unsi gned short val = rad50[i];
printRadChar (val / (40 * 40));
print RadChar ((val / 40) % 40);
print RadChar (val % 40);

256 Assembler

SECTION - Declare Relocatable Section

Syntax:
<nane>: SECTI ON [SHORT] [<nunber >]

Synonym:

None

Description

This directive declares a relocatable section and initializes the location counter for
the following code. The first SECTI ON directive for a section sets the location
counter to zero. Subsequent SECTI ON directives for that section restore the loca-
tion counter to the value that follows the address of the last code in the section.

<nane> is the name assigned to the section. Two SECTI ON directives with the
same name specified refer to the same section.

<numnber > is optional and is only specified for compatibility with MASM assem-
bler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only DC or DCB directives. A sec-
tion is considered to be a data section when it contains at least a DS directive or if it
is empty.

Example

The following example demonstrates the definition of a section aaa, which is split-
ted in two blocks, with section bbb in-between them.

The location counter associated with the label zz is 1, because a NOP instruction
was already defined in this section at label xx.

Abs. Rel Loc oj. code Source line
1 1 aaa: SECTION 4
2 2 000000 A7 XX: NCP
3 3 bbb: SECTION 5
4 4 000000 A7 yy: NCP

Assembler 257

5 5 000001 A7 NCP
6 6 000002 A7 NCP
7 7 aaa: SECTION 4
8 8 000001 A7 22 NCP

The optional qualifier SHORT specifies that the section is a short section, That
means than the objects defined there can be accessed using the direct addressing
mode.

Example:

The following example demonstrates the definition and usage of a SHORT section.

In following example, the symbol data is accessed using the direct addressing
mode.

HC12- Assenbl er

Abs. Rel. Loc (bj. code Source line
1 1 dat aSec: SECTICN SHORT
2 2 000000 dat a: DS.B1
3 3
4 4 codeSec: SECTI ON
5 5
6 6 entry:
7 7 000000 87 CLRA
8 8 000001 5Axx STAA dat a

See also

258

Assembler

SET - Set Symbol Value

Syntax:

<l abel >: SET <expr essi on>

Synonym:

None

Description

Similar to the directive, the SET directive assigns the value of the <expr es-
si on> in the operand field to the symbol in the <I abel > field. The <expr es-
si on> must resolve as an absolute expression and cannot include a symbol that is
undefined or not yet defined. The <I abel > is an assembly time constant, SET

does not generate any machine code.

The value istemporary; a subsequent SET directive can redefine it.

Example

0000 0002
000000 02

0000 0001
000001 01

0000 0001
0000 0000

QOWO~NOURAWNPRP

=

000002 00

Source line

count:

SET 2

DC. B count
SET count-1
DC. B count

| FNE count

SET count-1
ENDI F

DC B count

The value associated with the label count isdecremented after each DC. B instruc-

tion.

Assembler 259

SPC - Insert Blank Lines

Syntax:

SPC <count >

Synonym:
None

Description

Inserts <count > blank lines in the assembly listing. <count > may range from 0
to 65. This has the same effect as writing that number of blank linesin the assembly
source. A blank lineisaline containing only a carriage return.

260 Assembler

TABS - Set Tab Length

Syntax:
TABS <n>

Synonym:

None

Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range
from 0 to 128.

Assembler 261

TITLE - Provide Listing Title

Syntax:
TITLE "title"

Synonym:
TTL

Description

Printthe<t i t | e> on the head of every page of thelisting file. This directive must
be the first source code line. A title consists of a string of characters enclosed in
quotes ().

The title specified will be written on the top of each page in the assembly listing
file.

262 Assembler

XDEF - External Symbol Definition

Syntax:
XDEF [.<size>] <label>[,<label>]...

where <size> = W(default)

Synonym:
Q.CBAL, PWBLIC

Description

This directive specifies labels defined in the current module that are to be passed to
the linker as labels that can be referenced by other modules linked to the current
module.

The number of symbols enumerated in a XDEF directive is only limited by the
memory available at assembly time.

Example

XDEF Count, main

;; variable Count can be referenced i n other nodul es,
;; sanme for label main. Note that |inker and assenbl er
; are case-sensitive, i.e., Count != count.

Count: DS W 2

code: SECTI ON
nmai n: DCB1

Assembler 263

XREF - External Symbol Reference

Syntax:
XREF [.<size>] <synbol >[, <synbol >]. ..
where <size> = W(default)

Synonym:
EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in
another module. The list of symbols and corresponding 32 - bit values is passed to
the linker.

The number of symbols enumerated in a XREF directive is only limited by the
memory available at assembly time.
Example

XREF QGher@obal ; Reference "QherQ@obal" defined in another
; modul e (See XDEF directive exanple.)

264 Assembler

XREFB - External Reference for Symbols
located on the Direct Page

Syntax:
XREFB <synbol >[, <synbol >] . ..

Synonym:

None

Description:

This directive specifies symbols referenced in the current module but defined in
another module. Symbols enumerated in a XREFB directive, can be accessed using
the direct address mode. The list of symbols and corresponding 8-bit values is
passed to the linker.

The number of symbols enumerated in a XREFB directive is only limited by the
memory available at assembly time.
Example:

XREFB CherDrect ; Reference "GherDrect" defined in another
; modul e (See XDEF directive exanple.)

Assembler 265

Macros

A macro isatemplate for a code sequence. Once amacro is defined, subsequent ref-
erence to the macro name are replaced by its code sequence.

Macro Overview

A macro must be defined before it is called. When a macro is defined, it is given a
name. This name becomes the mnemonic by which the macro is subsequently
called.

The assembler expands the macro definition each time the macro is caled. The
macro call causes source statements to be generated, which may include macro
arguments. A macro definition may contain any code or directive except nested
macro definitions. Calling previously defined macrosis also allowed. Source state-
ments generated by a macro call are inserted in the source file at the position where
the macro isinvoked.

To call a macro, write the macro name in the operation field of a source statement.
Place the arguments in the operand field. The macro may contain conditional
assembly directives that cause the assembler to produce in-line-coding variations of
the macro definition.

Macros call produces in-line code to perform a predefined function. Each time the
macro is called, codeisinserted in the normal flow of the program so that the gener-
ated instructions are executed in line with the rest of the program.

Defining a Macro

The definition of amacro consists of four parts:

» The header statement, a MACRO directive with alabel that names the macro.

» The body of the macro, a sequentia list of assembler statements, some possibly
including argument placehol ders.

» The ENDMdirective, terminating the macro definition.
 eventualy an instruction MEXI T, which stops macro expansion.

See Section for information about the MACRO, ENDM MEXI T,
MLI ST directives.

The body of a macro is a sequence of assembler source statements. Macro parame-

266 Assembler

ters are defined by the appearance of parameter designators within these source
statements. Valid macro definition statements includes the set of processor assem-
bly language instructions, assembler directives, and calls to previously defined
macros. However, macro definitions may not be nested.

Calling Macros

The form of amacro call is:
[<l abel >:] <nane>[.<sizearg>] [<argunent> [, <argunent>]...]

Although a macro may be referenced by another macro prior to its definition in the
source module, a macro must be defined beforeits first call. The name of the called
macro must appear in the operation field of the source statement. Arguments are
supplied in the operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the
macro definition and the arguments specified in the macro call. The source state-
ments of the expanded macro are then assembl ed subject to the same conditions and
restrictions affecting any source statement. Nested macros calls are also expanded
at thistime.

Macro Parameters

As many as 36 different substitutable parameters can be used in the source state-
ments that constitute the body of amacro. These parameters are replaced by the cor-
responding arguments in a subsequent call to that macro.

A parameter designator consists of a backlashes character (\), followed by adigit (O
- 9) or an uppercase letter (A - Z). Parameter designator \O corresponds to a size
argument that follows the macro name, separated by a period (.).

Example

Consider the following macro definition:

M/Macro: MACRO
DC\0 \1, \2
ENDM

When this macro is used in a program, e.g.:
M/Macr 0. B $10, $56
the assembler expands it to:

Assembler 267

DC B $10, $56

Arguments in the operand field of the macro call refer to parameter designator \1
through \9 and \A through \Z, in that order. The argument list (operand field) of a
macro call cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for
parameter designators in the body of the macro as literal (string) substitutions. The
string corresponding to a given argument is substituted literally wherever that
parameter designator occurs in a source statement as the macro is expanded. Each
statement generated in the execution is assembled in line.

It is possible to specify anull argument in amacro call by a commawith no charac-
ter (not even a space) between the comma and the preceding macro name or comma
that follows an argument. When a null argument itself is passed as an argument in a
nested macro call, anull value is passed. All arguments have a default value of null

at the time of amacro call.

Macro Argument Grouping

To pass text including commas as a single macro argument, the assembler supports
aspecia syntax. This grouping starts with the [? prefix and ends with the 7] suffix.
If the [? or 7] patterns occur inside of the argument text, they have to be in pairs.
Alternatively, brackets, question marks and backward slashes can also be escaped
with abackward slash as prefix.

Note: This escaping only takes place inside of [? ?] arguments. A backward slash is
only removed in this processif it isjust before a bracket ([]), a question mark
(?) or a second backwards slash (\).

Example

M/Macro: MACRO
DC \1
ENDM

M/Macrol: MACRO
\1
ENDM

Here some macro calls with rather complicated arguments:

M/Macro [?$10, $567]

M/Macro [?"\[?" 7]

M/Macrol [?M/Macro [?$10, $567] ?]
M/Macr ol [?M/Macro \[?$10, $56\ ?] ?]

These macro calls expand to the following lines:

268 Assembler

DC $10, $56
DC [P

DC $10, $56
DC $10, $56

The macro assembler does also supports for compatibility with previous versions
macro grouping with a angle bracket syntax:

M/Macro <$10, $56>

However, this old syntax is ambiguous as < and > are also used as compare opera-
tors. For example the following code does not produce the expected resullt:

M/Macro <1 > 2, 2 > 3> ; Wong!

Because of this the old angle brace syntax should be avoided in new code. Thereis
aso and option to disableit explicitly.

See also the and the

Labels Inside Macros

To avoid the problem of multiple-defined labels resulting from multiple calls to a
macro that has labels in its source statements, the programmer can direct the assem-
bler to generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form _nnnnn where nnnnnisab
digit value. The programmer requests an assembler-generated label by specifying
\@ in alabel field within a macro body. Each successive label definition that speci-
fies a \@ directive generates a successive value of _nnnnn, thereby creating a
unique label on each macro call. Note that \@ may be preceded or followed by
additional charactersfor clarity and to prevent ambiguity.

Example
Thisisthe definition of the clear macro:

clear: MACRO
LDX # 1
LDAA #16
\ @QQCP: R 1, X+
DBNE A \@QOCrP
ENDM

This macro is called in the application:

Data: Section
tenporary: DS 16

Assembler 269

dat a: DS 16

Code: Section
cl ear t enpor ary
cl ear dat a

The two macro calls of ¢l ear are expanded in the following manner:
HC12- Assenbl er

Abs. Rel. Loc (bj. code Source line
1 1 cl ear MACRO
2 2 LDX # 1
3 3 LDAA #16
4 4 \ @QCCP: R 1, X+
5 5 DBNE A\ @OQCcrP
6 6 ENDM
7 7
8 8 Data: Section
9 9 000000 tenporary: DS 16
10 10 000010 dat a: DS 16
11 11
12 12 Code: Section
13 13 cl ear t enpor ary
14 2m 000000 CE xxxx + LDX #t enporary
15 3m 000003 8610 + LDAA #16
16 4m 000005 6930 +_00001LCCP: AR 1, X+
17 5m 000007 0430 FB + DBNE A _00001LOCP
18 14 cl ear data
19 2m 00000A CE XXXX + LDX #dat a
20 3m 00000D 8610 + LDAA #16
21 4m O00000F 6930 +_00002LCCP: AR 1, X+
22 5m 000011 0430 FB + DBNE A _00002LOCP

Macro Expansion

When the assembler reads a statement in a source program calling a previously
defined macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro cal is
saved as aliteral or null value in one of the 35 possible parameter fields. When the
number of arguments in the call is less than the number of parameters used in the
macro the argument, which have not been defined at invocation time are initialize
with ““ (empty string).

270 Assembler

Starting with the line following the MACROdirective, each line of the macro body is
saved and is associated with the named macro. Each line is retrieved in turn, with
parameter designators replaced by argument strings or assembler-generated label
strings.

Once the macro is expanded, the source lines are evaluated and object code is pro-
duced.

Nested Macros

Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expan-
sion takes place in line. Recursive macro call are also supported.

A macro call islimited to the length of oneline, i.e. 1024 characters.

Assembler 271

Assembler Listing File

The assembly listing fileis the output file of the assembler, which containsinforma-
tion about the generated code. The listing file is generated when the option —L is
activated. When an error is detected during assembling from thefile, thereisno list-
ing file generated.

The amount of information available depends on following assembly options:

The information in the listing file also depends on following assembly directives:

The format from the listing file isinfluenced by following directives:

The name of the listing file generated is <base name>.Ist

Page Header

The page header consist on 3 lines:

» Thefirst line contains an optional user string defined in the directive TITLE.

» The second line contains the name of the assembler vendor (METROWERKYS) as
well as the target processor name (HC12).

 Thethird line contains a copyright notice.

Example

Deno Application
Met r oner ks HC12- Assenbl er
(c) COPYR GHT METROMNERKS 1991- 2001

Source Listing

The printed columns can be configured with the . By default the fol-
lowing 5 columns are contained:

272

Assembler

Abs.

This column contains the absolute line number for each instruction. The absolute
line number is the line number in the debug listing file, which contains all included
files and where all macro calls have been expanded.

Example
Abs Rel .
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 1i
n 2i
12 3i
13 4
14 10
15 11
16 12
17 2m
18 3m
19 13
20 14

. File:

M/Dat a:
char 1:
char 2:

000000
000001

cpChar:

CodeSec:
Start:

000000 B6 xxxx +
000003 7A xxxx +
000006 A7
000007 A7

test.o

XDEF Start
SECTI ON
bDS.B 1
DS.B 1
I NCLUDE "macro. i nc"
MACRO
LDAA \ 1
STAA \ 2
ENDM
SECTI ON

cpChar charl, char2
LDAA charl
STAA char 2

NCP

NCP

In the previous example, the line number displayed in the column ‘Abs.’ are incre-
mented for each line.

Rel.

This column contains the relative line number for each instruction. Therelative line
number is the line number in the source file. For included files, the relative line
number is the line number in the included file. For macro call expansion, the rela-
tive line number is the line number of the instruction in the macro definition.

A ‘i’ suffix is appended to the relative line number, when the line comes from an
included file. A ‘m’ suffix is appended to the relative line number, when the line is
generated by a macro call.

Assembler 273

Example

1 1 e
2 2 File: test.o
3 K e
4 4
5 5 XDEF Start
6 6 M/Dat a: SECTI ON
7 7 000000 char 1: DS.B 1
8 8 000001 char 2: DS.B 1
9 9 I NCLUDE " nmacro. i nc"
10 1 cpChar: MACRO
11 2 LDAA\ 1
12 3i STAA \ 2
13 4 ENDM
14 10 CodeSec: SECTI N
15 n Start:
16 12 cpChar charl, char2
17 2m 000000 B6 xxxx + LDAA charl
18 3m 000003 7A xXxxx + STAA char 2
19 13 000006 A7 NCP
20 14 000007 A7 NCP

In the previous example, the line number displayed in the column ‘Rel.” represent
the line number of the corresponding instruction in the source file.

‘1i’ on absolute line number 10 denotes that the instruction ‘cpChar: MACRD is
located in an included file.

‘2m’ on absolute line number 17 denotes that the instruction ‘LDAA char 1’ is gener-
ated by amacro expansion.

Loc

This column contains the address of the instruction. For absolute sections, the
addressis preceded by a‘a and contains the absol ute address of the instruction. For
relocatable sections, this address is the offset of the instruction from the beginning
of the relocatable section.. This offset is a hexadecimal number coded on 6 digits.

A vaueiswritten in this column in front of each instruction generating code or alo-
cating storage. This column is empty in front of each instruction which does not
generate code (for example SECTION, XDEF, ...).

274

Assembler

Example
Abs. Rel Loc (bj. code Source line
1 1 B R
2 2 ; File: test.o
3 3 oo
4 4
5 5 XDEF Start
6 6 M/Dat a: SECTI ON
7 7 000000 char 1: DS.B 1
8 8 000001 char 2: DS.B 1
9 9 I NCLUDE "nmacro. i nc"
10 1i cpChar: MACRO
11 2i LDAA \ 1
12 3i STAA \ 2
13 4i ENDMV
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar charl, char2
17 2m 000000 B6 xxxx + LDAA charl
18 3m 000003 7A XXXX + STAA char 2
19 13 000006 A7 NCP
20 14 000007 A7 NCP

In the previous example, the hexadecimal number displayed in the column ‘Loc.’ is
the offset of each instruction in the section ‘codeSec’.

There is no location counter specified in front of the instruction ‘I NCLUDE
"macro. i nc"’ because this instruction does not generate code.

The instruction ‘LDAA char 1’ is located at offset O from the section ‘codeSec’ start
address.

The instruction ‘STAA char 2’ islocated at offset 3 from the section ‘codeSec’ start
address.

Obj. Code

This column contains the hexadecimal code of each instruction in hexadecimal for-
mat. This code is not identical to the code stored in the object file. The letter ‘X’ is
displayed at the position where the address of an external or relocatable labdl is
expected. Code at position when ‘x’ are written will be determined at link time.

Assembler

275

Example
Abs. Rel

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 1i

11 2i

12 3i

13 4

14 10

15 11

16 12
17 2m
18 3m

19 13

20 14

Source Line

000000
000001

000000 B6 xxxx
000003 7A xxxx
000006 A7
000007 A7

Source line

; File: test.o

XDEF Start
MData: SECTION
char 1: DS.B 1
char 2: DS.B 1
| NCLUDE " nmacro. i nc"
cpChar: MACRO
LDAA \ 1
STAA \ 2
ENDM
CodeSec: SECTI CN
Start:
cpChar charl, char?2

+ LDAA char1
+ STAA char 2

NCP
NCP

This column contains the source statement. This is a copy of the source line from
the source module. For lines resulting from a macro expansion, the source lineisthe
expanded line, where parameter substitution has been done.

Example

000000
000001

Source line

; File: test.o

XDEF Start
MData: SECTICON
char 1: DS.B 1
char 2: DS.B 1
I NCLUDE " nacro. i nc"
cpChar: MACRO
LDAA \ 1
STAA \ 2

276

Assembler

13
14
15
16

18
19
20

4i
10
11
12

3m
13
14

000000 B6 xxxx
000003 7A xxxx
000006 A7
000007 A7

CodeSec:
Start:

ENDM
SECTI ON

cpChar charl, char2
LDAA charl
STAA char 2

NCP

NCP

Assembler

277

MASM Compatibility

The macro assembler has been extended to ensure compatibility with the MASM

assembler.

Comment Line

A line starting with a‘*’ character is considered to be acomment line by the assem-

bler.

Constants

Integer Constants

For compatibility with the MASM assembler, following notations are also sup-
ported for integer constants:

A decimal constant is defined by a sequence of decimal digits (0-9) followed by a
‘d’ or ‘D’ character.

A hexadecimal constant is defined by a sequence of hexadecimal digits (0-9, af,
A-F) followed by a‘h’ or ‘“H’ character.

» An octal constant is defined by a sequence of octal digits (0-7) followed by a‘o’,
‘O, 'q, or‘Q character.

» A binary constant is defined by a sequence of binary digits (0-1) followed by a
‘b’ or ‘B’ character.

Example

512d

512D

200h

200H

10000
10000
1000q
1000Q
1000000000b

; decimal representation

; deci mal representation

; hexadeci mal representation
; hexadeci mal representation
; octal representation

; octal representation

; octal representation

; octal representation

; binary representation
10000000008 ;

bi nary representation

278

Operators
For compatibility with the MASM assembler, following notations are also sup-
ported for operators:
Shift left I<
Shift right 1>
Bitwize AND I
Bitwize OR I+
Bitwize XOR Ix, IX
Directives

The following table enumerates the directives, which are supported by the macro

assembler for compatibility with MASM:

Operator Notation Description

RMB DS Define storage for a variable. Argument
specifiesthe byte size

RMD DS 2* Define storage for a variable. Argument
specifies the number of 2 byte blocks

RMQ DS 4* Define storage for a variable Argument
specifies the number of 4 byte blocks

ELSEC ELSE Alternate of conditional block

ENDC ENDIF End of conditional block

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (Visible from
outside)

PUBLIC XDEF Make a symbol public (Visible from
outside)

EXTERNAL XREF Import reference to an external symbol.

Assembler 279

Operator Notation Description

XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows to switch to a section which
have been defined previously.

ASCT Creates a predefined section which
name id ASCT.

BSCT Creates a predefined section which
name id BSCT. Variable defined in this
section are accessed using the direct
addressing mode.

CSCT Creates a predefined section which
name id CSCT.

DSCT Creates a predefined section which
name id DSCT.

IDSCT Creates a predefined section which
name id IDSCT.

IPSCT Creates a predefined section which
name id IPSCT.

PSCT Creates a predefined section which
name id PSCT.

280 Assembler

Assembler 281

MCUasm Compatibility

The macro assembler has been extended to ensure compatibility with the MCUasm
assembler.

MCUasm compatibility mode can be activated, specifying the option -MCUasm.

Labels

When MCUasm compatibility mode is activated, labels must be followed by a
colon, even when they start on column 1.
Example

When MCUasm compatibility mode is activated, following portion of code gener-
ate an error message, because the label ‘1abel’ is not followed by a colon.

| abel DCB1

When MCUasm compatibility mode is not activated, the previous portion of code
does not generate any error message.

SET Directive

When MCUasm compatibility mode is activated, relocatable expressions are also
allowed in a SET directive.
Example

When MCUasm compatibility mode is activated, following portion of code does
not generate any error message:

| abel : SET *

When M CUasm compatibility mode is not activated, the previous portion of code
generates any error message, because SET label can only refer to absolute expres-
sions.

Obsolete Directives

The following table enumerates the directives, which are not recognized any more,

282

Assembler

when MCUasm compatibility mode is switched ON.:

Operator Notation Description

RMB DS Define storage for avariable

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (Visible from
outside)

PUBLIC XDEF Make a symbol public (Visible from
outside)

EXTERNAL XREF Import reference to an external symbol.

Assembler

Semi-Avocet Compatibility

The macro assembler has been extended to ensure compatibility with the Avocet
assembler.

Avocet compatibility mode can be activated, specifying the option

The compatibility does not cover all Avocet specific features but only some of

them.

Directives

The following table enumerates the directives, which are supported when the

Avocet Assembler compatibility modeis activated.:

Directive

DEFSEG

Notation

Description

Segment definition (See section “
" below).

ELSEIF

Conditional directive, checking a specific
condition.
IF ((labell & | abel2) !'= 0)
LDD #| abel 1
ELSIF (label 1 = 0)
LDD #| abel 2
ELSE
LDD #0
ENDI F

EXITM

MEXIT

Define an exit condition for amacro.
Copy MACRO source, dest
| FB "source"
EXI TM
ENDI F
LDD source
STD dest
ENDM

284 Assembler
Directive Notation Description
IFB Param IFC Param, “ | Test if amacro parameter isempty. The
syntax is|FB "param".
Copy MACRO source, des
| FB "source"
LDD #0
STD dest
ELSE
LDD source
STD dest
ENDI F
ENDM
IFNB Param IFNC Param “ | Test if amacro parameter isnot empty. The
syntax isIFNB "param”
Copy MACRO source, dest
I FNB "source"
LDD source
STD dest
ELSE
LDD #0
STD dest
ENDI F
ENDM
NOSM MLIST OFF Do not insert macro expansion in listing
file.
SEG SWITCH Switch to a previously defined segment
(See section “ " below).
SM MLIST ON Insert macro expansion in listing file.
SUBTITLE Defines asubtitle for the input file. This
subtitle is written to the listing file.
SUBTI TLE title2: Main File
TEQ SET Define a constant, which value may be
modified in the source file

Section Definition

Section definition is performed using the directive DEFSEG. The correct syntax for
aDEFSEG directiveis:
DEFSEG <nane> [START=<start address>] [<section qualifier>]

Where:

Assembler 285

* name: is the name of the section.
o start address: is the start address for the section. This parameter is optional.

* section qualifier: is the quaifier which applies to the section. This parameter is
optional and may take the value:

Qualifier Meaning
PAGEO for data section located on the direct page
DATA for data section
CODE for code section
Example:

DEFSEG nyDat aSect i on
DEFSEG D _ATC TABLES START=$0EA0
DEFSEG nyD rect Dat a PAGEO

Note: Because of an incompatibility in the object file format, an absolute section
implementation must entirely reside in a single assembly unit. You cannot
split the code from an absol ute section over several object files. An absolute
section is a section associated with a start address.

Note: Inorder to split a section over different assembly units, you better define the
section as relocatable (without START) and you can specify in the linker
PRM file the address where you want to load the section.
Example:
In the assembly source file:
DEFSEG D ATC TABLES ; START=$0EAQ
In the linker parameter file:
SECTI ON
MY TABLE = READ WR TE OXOEAD TO OXOEFF;
PLACEMENT

D ATC TABLES | NTO MY_TABLE:

286 Assembler

The directive SEG is then used to activate the corresponding section in the assem-
bly sourcefile.

The name specified in a SEG directive was always previously specified in a DEF-
SEG directive.

Following syntax will be accepted for SEG:
SEG <nare>
where
name: isthe name of the section, which was previously defined in a DEFSEG direc-
tive.
Example:

SEG nyDat aSect i on

Macro Parameters

When Avocet Compatibility is switched ON, names can be associated with macro
parameters. A macro definition can now look as follows:

Copy MACRO source, destination
LDD source
STD destination
ENDM

Support for Structured Assembly

When the Avocet compatibility is switched ON, SWITCH or FOR construct are
available in Macro assembler.

Switch Block

The SWITCH directive evaluates an expression and assembles the code following
the particular CASE statement, which satisfies the switch expression. If no CASE
statement corresponds to the value of the expression, the code following the
DEFAULT (if present) is assembled.

ENDSW terminates the SWITCH directive.

The expression specified in a SWITCH directive must be an absolute expression.

Assembler 287

Example:

XXX equ 5

SWTCH xxx
CASE 0
LDD #1
CASE 1
LDD 2
CASE 3
LDD #6
DEFAULT
LDD #0
ENDSW

Following set of instructions are generated by the above portion of code:
XXX equ 5
LDD #0
FOR Block

In the Avocet compatibility mode, the is supported.

Example:

FOR1=2 TO 6
NCP
ENDF

Following set of instructions are generated by the above portion of code:

288 Assembler

Assembler 289

Mix C and Assembler Applications

When you intend to mix Assembly source file and ANSI C source filesin asingle
application, following issues are important:

To build mixed C and Assembler applications, you have to know how the C - Com-
piler uses registers and calls procedures. The following sections will describe this
for compatibility with the compiler. If you are working with another vendor ANSI

C compiler, refer to your Compiler Manual to get the information about parameter
passing rules.

Memory Models

The memory models are only important if you mix C and assembler code. In this
case al sources must be compiled or assembled with the same memory model.

The assembler supports all memory models of the compiler. Depending on your
hardware use the smallest memory model suitable for your programming needs.

The table below summarizes the different memory models. It shows when to use a
particular memory model and which assembler switch to use.

Global
Data

Suggested Use

-Ms SMALL SPrel extended | Small applications which fit into the 64k
address space or which do only have limited
places where paged area is accessed.

290 Assembler

Memory L ocal Global

BANKED | SPrd extended | Larger applications which code does not fit
into the 64k address space. Dataislimited to
the 64 k address space. The code generated
by the compiler is not much larger asin the
SMALL memory model because the CPU
supports the CALL instruction. Usually
there is one additional byte per function call.

—Mi LARGE SPrel far Applicationswhich datadoes not fit into 64k
address space. The code generated by the
compiler is significantly larger then in the
other memory models.

Note: The default pointer size for the compiler is also affected by the memory
model chosen.

Parameter Passing Scheme

When you are using the HC12 compiler, the parameter passing scheme is the fol-
lowing:

The Pascal calling convention is used for functions with a fixed number of parame-
ters: The caler pushes the arguments from left to right. After the call, the caller
removes the parameters from the stack again.

The C calling convention is used only for functions with a variable number of
parameters. In this case the caller pushes the arguments from right to left.

If the last parameter of a function with a fixed number of arguments has a simple
type, it is not pushed but passed in a register. This results in shorter code because
pushing the last parameter can be saved. The following table shows an overview of
the registers used for argument passing.

Size of Last Parameter Type example Register

1 byte char B

2 bytes int, array D

3 bytes far dat a X(L), B(H)
poi nt er

4 bytes I ong D(L), X(H

Assembler

291

Parameters having a type not listed are passed on the stack (i.e. all those having a
size greater than 4 bytes).

Return Value

Function results usually are returned in registers, except if the function returns a
result larger than 4 bytes (see below). Depending on the size of the return type, dif-
ferent registers are used:

Size of return value | Type example

1 byte char B

2 bytes int D

3 bytes far_ dat a X(L), B(H
poi nt er

4 bytes I ong D(L), X(H

Functions returning a result larger than two words are called with an additional

parameter. This parameter is the address where the result should get copied to.

Accessing Assembly Variables in an ANSI C
Source File

A variable or constant defined in an assembly sourcefileis accessibleinan ANSI C

sourcefile.

The variable or constant is defined in the assembly source file using the standard

assembly syntax.

Variables and constants must be exported using the directive XDEF to make them
visible from other modules.

Example of Data and Constant Definition:

Dat aSec:
ASMDat a:

1

XDEF ASMDat a, ASMDonst
SECTI ON

; Definition of a variable

292 Assembler

Const Sec: SECTI ON
ASMoonst: DC W $44A6 ; Definition of a constant

We recommend to generate a header file for each assembler source file. This header
file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header
file.
Example of Data and Constant Declaration:

extern int ASMbata; /* External declaration of a variable */
extern const int ASMlonst; /* External declaration of a constant */

The variable or constant can then be accessed in the usual way, using their name.

Example of Data and Constant Reference:

ASMDat a = ASMDonst + 3;

Accessing ANSI C Variables in an Assembly
Source File

A variable or constant defined in an ANSI C source file is accessible in an Assem-
bly sourcefile.

The variable or constant is defined in the ANSI C source file using the standard
ANSI C syntax.
Example of Data and Constant Definition:

unsi gned int CDat a,; /* Definition of a variable */
unsi gned const int Qlonst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted in the assembly
sourcefile.

This can also be donein a separate file, included in the assembly source file.
Example of Data and Constant Declaration:
XREF CData ; External declaration of a variable

XREF Clonst; External declaration of a constant

The variable or constant can then be accessed in the usual way, using their name.

Assembler

293

Note: The compiler supports also the automatic generation of assembler include files.
Seein the compiler manual the description of the compiler option“ -la” .

Example of Data and Constant Reference:

LDAA Clonst

LDAA CDat a

Invoking an Assembly Function in an ANSI C
Source File

An function implemented in an assembly source file can be invoked in a C source
file. During the implementation of the function in the assembly source file, the pro-
grammer should pay attention to the parameter passing scheme of the ANSI C com-
piler heis using, in order to retrieve the parameter from the right place.

Example of assembler file: mixasm.asm

Dat aSec:
ASMDat a:
CodeSec:
AddVar :

XREF CDhat a
XDEF AddVar
XDEF ASMDat a

SECTI ON
DS.B 1
SECTI ON

ADDB CDat a ; add CData to the parameter in register B
STAB ASMbata ; result of the addition in ASMData
RTS

We recommend to generate a header file for each assembler sourcefile. This header
file should contain the interface to the assembly module.

/* mxasmh */
#i fndef _M XASM H_
#define _M XASM H_

voi d AddVar (unsi gned char val ue);
/* function which adds the paramater value to the global CDhata */
/* and then stores the result in ASMbata */

extern char ASMDat a;

294 Assembler

/* variabl e which receives the result of AddVar */
#endif /* MXASMH_ */

The function can then be invoked in the usual way, using its name.

Example of C file:

mixc.c (compile it with the compiler option -CC when using the HIWARE Object
File Format).

static int Bror = 0;
const unsigned char CData=12;
#i ncl ude "m xasmh"

void main (void) {

AddVar (10) ;

if (ASMData != Chata + 10){
Error = 1,

} else {
Error = 0,

}

for(;;); // wait forever

}

Note: Becareful, the assembler will not make any check on the number and type of
the function parameters.

The application must be correctly linked.

For these Cand . asmfile, apossible linker parameter fileis:

Example of linker parameter file: mixasm.prm

LI NK m xasm abs

NAMES
m XC. 0 m xasm o

END

SECTI ONS
MY _RCM
MY_RAM
MY_STACK

END

PLACEMENT
DEFAULT_RAM I NTO MY_RAM
DEFAULT_ROM | NTO W_ROM
SSTACK I NTO MY_STACK;

END

INT main

READ CNLY 0x4000 TO Ox4FFF;
READ WRI TE 0x2400 TO Ox2FFF,
READ WRI TE 0x2000 TO Ox23FF;

Note: Be careful, use the same memory model and object file format for all the

Assembler 295

generated object files.

Support for Structured Types

When option “-Struct: Support for Structured Types” is activated, the macro assem-
bler also supports definition and usage of structured types. This allows an easier
way to access ANSI C structured variable in the macro assembler.

In order to provide an efficient support for structured type the macro assembler
should provide notation to:

Note: Some limitation apply in the usage of the structured type in the macro
assembler (See section below).

Structured Type Definition
The macro assembler will be extended with following new keywords, in order to
support ANSI C type definition.

STRUCT
UN ON

The structured type definition can be encoded as:

typeNane: STRUCT
labl: DS. W1
| ab2: DS. W1

ENDSTRUCT
where:

‘typeName' is the name associated with the defined type. The type name will
be considered as a user define keyword. The macro assembler will
be case insensitive on type name.

'STRUCT' specifies that the typeis a structured type.
'labl’, 'lab2' are the fields defined inside of the type 'typeName'. The fields

296 Assembler

will be considered as user defined labels and the macro assembler
will be case sensitive on label names.

As dl other directive in assembler, the directives STRUCT and UNION are case
insensitive.

Thedirective STRUCT and UNION cannot start on column 1 and must be preceded
by alabel.

Type allowed for Structured Type Fields

Field inside of a structured type may be:

* another structured type
* abase type, which can be mapped on 1, 2 or 4 bytes.

The following table shows how the ANSI C standard types are converted in the
assembler notation:

ANS C type Assembler Notation
char DSB

short DSW

int DSW

long DSL

enum DSW

bitfield -- not supported --
float -- not supported --
double -- not supported --
data pointer DSW

function pointer -- not supported --

Variable Definition

The macro assembler should provide away to define avariable with a specific type.
This can be done using following syntax:

Assembler 297

var: typeNane

Where

‘var' is the name of the variable.

‘typeName' is the type associated with the variable.
Example

nyType: STRUCT
fieldl: DS.wi
field2: DS W1
field3: DS.B 1
field4: bDS.B 3
fields: DS.wi1
ENDSTRUCT

Dat aSecti on: SECTI ON
structVar: TYPE nyType ; variable ‘structVar’ is fromtype ‘nyType’
Variable Declaration

The macro assembler should provide a way to associated a type with a symbol
which is defined externally. This can be done extending the X REF syntax:

XREF var: typeNane, var?2

Where

‘var' is the name of an externally defined symbol.

'typeName' is the type associated with the variable 'var'.

‘var2' is the name of another externally defined symbol. This symbol is
not associated with any type.

Example

nyType: STRUCT
fieldl: DS W1
field2: DS.wi
field3: DS.B 1
field4: bDS.B 3
fields: DS.wWi1
ENDSTRUCT

XREF extData: nyType ; variable ‘extData is fromtype ‘ nyType’

298 Assembler

Accessing Structured Variable

The macro assembler should provide a way to access each structured type field
absolute address and offset.

Accessing a Field Address

To access a structured type field address, the assembler will use the character "'

var:field
Where
‘var' is the name of a variable, which was associated with a structured
type.
field' is the name of a field in the structured type associated with the
variable.
Example
nyType: STRUCT
fieldl: DS.W1
field2: DS.W1
field3: DS.B 1
field4: DS.B 3
fields5: DS.W1
ENDSTRUCT

XREF nyDat a: nyType
XDEF entry

CodeSec: SECTI ON
entry:
LDAA nyData: fiel d3 ; Loads register Awth the content of
; field fiel d3 fromvariabl e nyDat a.

Note: The period cannot be used as separator, because in assembler it isa valid
character inside of a symbol name.
Accessing a Field Offset

To access a structured type field offset, the assembler will use following notation:
<t ypeName>- ><fi el d>

Where

‘typeName' isthe name of a structured type.

Assembler

299

field'

Example

nyType:
fieldl:
field2:
field3:
field4:
fields:

CodeSec:
entry:

is the name of a field in the structured type associated with the
variable.

STRUCT

DS W1

DS W1

bDS.B 1

bS.B 3

DS W1
ENDSTRUCT
XREF. B nyDat a
XDEF entry

SECTI ON

LDX #nyDat a

LDAA nyType->fiel d3, X ; Adds the offset of field 'field3
; (4) to X and loads Awith the
; content of the pointed address

Structured Type: Limitations

Field inside of a structured type may be:

« another structured type
* abase type, which can be mapped on 1, 2 or 4 bytes.

The macro assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previ-
ously. A variable cannot be associated with a type defined afterwards.

300

Assembler

Assembler 301

Make Applications

Assembler Applications

Generating directly an Absolute File

When an absolute file is directly generated by the assembler:

* the application entry point must be specified in the assembly source file using the
directive ABSENTRY.

» The whole application must be encoded in a single assembly unit.
 The application should only contain absolute sections.

Generating Object Files

The entry point of the application must be mentioned in the Linker parameter file
using the command "I NI T funcname". The application is build of the different
object files with the Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of al the
object files building the application must be enumerated in the application PRM
file.

Mixed C and assembler Applications

Normally the application starts with the main procedure of a C file. All necessary
object files - assembler or C- are linked with the Linker in the same fashion like
pure C applications. The Linker is documented in a separate document.

Memory Maps and Segmentation

Relocatable Code Sections are placed in the DEFAULT_ROMor . t ext Segment.
Relocatable Data Sections are placed in the DEFAULT_RAMor . dat a Segment.

Note: The .text and .data names are only supported when the ELF object fileformat is
used.

There are no checks at al that variables arein a RAM If you mix code and datain a
section you can't place the section into ROM That's why we suggest to separate code

302 Assembler

and datainto different sections.

If you want to place a section in a specific address range, you have to put the section
name in the linker parameter file in the placement list.

SECTI ONS
ROML = READ O\LY 0x0200 TO OxOFFF;
Speci al ROM = READ O\LY 0x8000 TO Ox8FFF;
RAM = READ WR TE 0x4000 TO Ox4FFF;
PLACEMENT
DEFALLT ROM | NTO ROML;
nySecti on I NTO Speci al ROM

DEFAULT_RAM | NTO RAM
END

Assembler 303

How To ...

This section covers the following topics:

How To Work with Absolute Sections

An absolute section is a section which start addressis known at assembly time.

(Seemodulesf i boor g. asmandf i boor g. pr min the demo directory)

Defining Absolute Sections in the Assembly Source File

An absolute section is defined using the directive ORG In that case the macro
assembler generates a pseudo section, which name is “ORG_<i ndex>", where
index is an integer which is incremented each time an absolute section is encoun-
tered.

Example

Defining an absolute section containing data:

CRG $800 ; Absolute data section.
var: 0S. B 1
CRG $A00 ; Absolute constant data section.

cstl: DCB $A6
cst2: DC.B $BC

In the previous portion of code, the label cst 1 will be located at address $A00,
and label cst 2 will belocated at address $A01.

1 1 CRG $800

2 2 a000800 var: DS. B 1

3 3 CRG $A00

4 4 a000A00 A6 cstl: DCB $A6
5 5 a000A01 BC cst2: DC B $BC

304 Assembler

Defining an absol ute section containing code:

XDEF entry

CRG $Q00 ; Absol ute code secti on.
entry:

LDAA cstl ; Load value in cstl

ADDA cst2 ; Add value in cst2

STAA var ; Store in var

BRA entry

In the previous portion of code, the instruction LDAA will be located at address
$CO0, and instruction ADDA at address $C03.

6 6 CRG $Q00 ; Absol ute code secti on.
7 7 entry:

8 8 a0000 B6 0A0DO LDAA cstl ; Load value in cstl
9 9 a000Q03 BB 0AD1 ADDA cst2 ; Add value in cst2
10 10 a000Qd6 7A 0800 STAA var ; Store in var

11 11 a000Q9 20F5 BRA entry

In order to avoid problems during linking or execution from an application, an
assembly file should at |east:

« Initialize the stack pointer if the stack is used.
Theinstruction LDS can be used to initialize the stack pointer.
* Publish the application entry point using XDEF.

* The programmer should ensure that the addresses specified in the source file are
valid addresses for the MCU being used.

Linking an Application containing Absolute Sections
When the assembler is generating an object file, applications containing only abso-
lute sections must be linked. The linker parameter file must contain at least:
» The name of the absolute file.
» The name of the object file which should be linked.

 The specification of a memory area where the sections containing variables must

be allocated. For applications containing only absolute sections, nothing will be
allocated there.

* The specification of a memory area where the sections containing code or con-
stants must be alocated. For applications containing only absolute sections,
nothing will be allocated there.

* The specification of the application entry point.

Assembler 305

» The definition of the reset vector.
The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES
test.o /* Name of the object files in the application. */

END

SECTI ONS

/* READ ONLY nenory area. There shoul d be no overlap between this
nmenory area and the absol ute sections defined in the assenbly
source file. */

MY_RCOM = READ O\NLY 0x4000 TO Ox4FFF;

/* READ WRI TE nenory area. There should be no overlap between this
nmenory area and the absol ute sections defined in the assenbly
source file. */

MY_RAM = READ WR TE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Rel ocat abl e variabl e sections are allocated in M\W_RAM */

DEFAULT_RAM I NTO MY_RAM

/* Rel ocatabl e code and constant sections are allocated in WY ROM */
DEFAULT_RQM I NTO M¥_RCM

END

INT entry /* Application entry point. */

VECTCR ADDRESS OXFFFE entry /* Initialization of the reset vector. */

Note: There should be no overlap between the absol ute section defined in the
assembly source file and the memory area defined in the PRM file

Note: Asthe memory areas (segments) specified in the PRM file are only used to
allocate relocatable sections, nothing will be allocated there, when the
application contains only absolute sections. In that case you can even spec-
ify invalid address ranges in the PRM file

How To Work with Relocatable Sections

A relocatable section is a section which start address is determined at linking time.

(Seemodulesfi bo. asmandfi bo. pr min the demo directory)

Defining Relocatable Sections in the Source File
A relocatable section is defined using the directive SECTI ON.

306 Assembler

Example
Defining arelocatable section containing data:

const Sec: SECTION ; Rel ocatabl e constant data secti on.
cst 1: OC. B $A6
cst 2: DC B $BC

dataSec: SECTICN ; Relocatable data section.
var: DS. B 1

In the previous portion of code, the label cst 1 will be located at offset 0 from the
section const Sec start address, and label cst 2 will be located at offset 1 from
the section const Sec start address.

2 2 const Sec: SECTION ; Rel ocatabl e
3 3 000000 A6 cst1: OC B $A6

4 4 000001 BC cst 2: OC B $BC

5 5

6 6 dataSec: SECTION; Rel ocatable
7 7 000000 var: 0S. B 1

Defining arelocatable section containing code:

XDEF entry
codeSec: SECTICN ; Rel ocatabl e code section.
entry:
LDAA cstl ; Load value in cstl
ADDA cst2 ; Add value in cst2
STAA var ; Store in var
BRA entry

In the previous portion of code, the instruction LDAA will be located at offset O
from the section codeSec start address, and instruction ADDA at offset 3 from the
section codeSec start address.

In order to avoid problems during linking or execution from an application, an
assembly file should at least:

« Initialize the stack pointer if the stack is used.
Theinstruction LDS can be used to initialize the stack pointer.

« Publish the application entry point using the directive XDEF.

Linking an Application containing Relocatable Sections

Applications containing relocatable sections must be linked. The linker parameter
file must contain at least:

Assembler 307

» The name of the absolutefile.
» The name of the object file which should be linked.

* The specification of amemory area where the sections containing variables must
be allocated.

» The specification of a memory area where the sections containing code or con-
stants must be allocated.

* The specification of the application entry point
 The definition of the reset vector

The minimal linker parameter file will look as follows:

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Nanme of the object files in the application. */
END
SECTI ONS
/* READ ONLY nenory area. */

MY_ROM = READ CNLY 0x2B00 TO Ox2BFF;
/* READ WRI TE nenory area. */

MY_RAM = READ WR TE 0x2800 TO Ox28FF;

END

PLACEMENT

/* Relocatabl e variabl e sections are allocated in MY_RAM */
DEFALLT _RAM I NTO MY_RAM

/* Rel ocatabl e code and constant sections are allocated in WY ROM */
DEFAULT_ROM const Sec I NTO \¥_RQM

END

INT entry /* Application entry point. */

VECTCR ADDRESS OxFFFE entry /* Initialization of the reset vector. */

Note: The programmer should ensure that the memory ranges he specifiesin the
SECTIONS block are valid addresses for the controller he isusing. Addi-
tionally, when using the SDI debugger the addresses specified for code or
constant sections must be located in the target board ROM area, otherwise
the debugger will not be able to load the application

The module f i bo. asmlocated in the demo directory is a small example of usage
of relocatable sections in an application.

How To Initialize the Vector Table

The vector table can beinitialized in the assembly source file or in the linker param-
eter file. We recommend to initialize it in the linker parameter file.

308

Assembler

Initialize the Vector Tablein the PRM File

Initializing the vector table in the Source File using a Relocatable Section

Initializing the vector table in the Source File using an Absolute Section

Initializing the Vector Table in the Linker PRM File

Initializing the vector table from the PRM file allows you to initialize single entries
in the table. The user can decide if he wants to initialize all the entries in the vector

table or not.

The labels or functions, which should be inserted in the vector table, must be imple-
mented in the assembly source file. All these labels must be published otherwise
they cannot be addressed in the linker PRM file.

Example:
XDEF | RQFunc, Xl RQFunc, SWFunc, CodeFunc, ResetFunc
Dat aSec: SECTI ON
Dat a: DS.W5 ; Each interrupt increments an elenent in the table.
CodeSec: SECTI ON
; Inplenentation of the interrupt functions.
| RQFunc:
LDAB #0
BRA int
Xl RGFunc:
LDAB #2
BRA int
SW Func:
LDAB #4
BRA int
pCodeFunc:
LDAB #6
BRA int
Reset Func:
LDAB #8
BRA entry
int:
LDX #Data ; Load address of synbol Data in X
ABX ; X <- address of the appropriate elenent in the table
INC 0, X ; The table elenent is increnented
RTI
entry:
LDS #$AFE
| oop: BRA | oop

Note: The functions ‘ IRQFunc’, ‘ XIRQFunc’, ‘ SWIFunc’, OpCodeFunc’, ‘ Reset-

Assembler 309

Func’ are published. Thisisrequired because they are referenced in the
linker PRM file.

Note: Asthe processor automatically pushes all registers on the stack on occur-
rence of an interrupt, the interrupt function do not need to save and restore
theregistersitisusing

Note: All Interrupt functions must be terminated with an RTI instruction

The vector tableisinitiaized using the linker command VECTOR ADDRESS.

Example:

LINK test. abs
NAMES

test.o
END

SECTI ONS
MY_ROM
MY_RAM

END

PLACENENT
DEFAULT_RAM
DEFAULT_ROM

END

READ O\LY 0x0800 TO OXO8FF;
READ WR TE 0x0B0O TO OXOCFF;

IN T Reset Func

VECTCR ADDRESS OxFFF2 | RQFunc
VECTCR ADDRESS OxFFF4 Xl RQFunc
VECTCR ADDRESS OxFFF6 SW Func
VECTCR ADDRESS OxFFF8 (pCodeFunc
VECTCR ADDRESS OxFFFE Reset Func

Note: The statement ‘ INIT ResetFunc’ defines the application entry point. Usu-
ally, this entry point isinitialized with the same address as the reset vector.

Note: The statement ‘ VECTOR ADDRESS OxFFF2 IRQFunc’ specifies that the
address of function ‘ IRQFunc’ should be written at address OxFFF2.

Initializing the Vector Table in the Source File using a Relo-
catable Section
Initializing the vector table in the assembly source file requiresthat al the entriesin

the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

310

Assembler

The labels or functions, which should be inserted in the vector table must be imple-
mented in the assembler source file or an external reference must be available for
them. The vector table can be defined in an assembly source file in an additional
section containing constant variables.

Example:

XDEF Reset Func
Dat aSec: SECTI ON

Dat a: DS. W5

; Each interrupt increments an el enent of the table.

CodeSec: SECTI CN
; Inplenentation of the interrupt functions.

I RQGFunc:
LDAB #0
BRA int
X RQrunc:
LDAB #2
BRA int
SW Func:
LDAB #4
BRA int
CodeFunc:
LDAB #6
BRA int
Reset Func:
LDAB #8
BRA entry
DummyFunc:
RTI
int:
LDX #Data
ABX
INC 0, X
RTI
entry:
LDS #$AFE
| oop: BRA | oop

Vect or Tabl e: SECTI ON

; Definition of
IRQAnt:

XIRQ nt:
SWint:
QpCodel nt :
OCPReset I nt :

d MonResl nt :

Reset | nt

the vector table.
DC. W1 RGFunc
DC. W XI RGFunc
DC. W SW Func
DC. W QpCodeFunc

DC. WDummyFunc; No function attached to OOP Reset.

DC. WDummyFunc; No function attached to A ock

; Moni tor Reset .
DC. W Reset Func

Assembler 311

Note: Each constant in the section ‘Vector Table' is defined as a word (2 Byte con-
stant), because the entriesin the vector table are 16 bit wide.

Note: Inthe previous example, the constant ‘IRQInt’ isinitialized with the address
of the label ‘IRQFunc'.

Note: In the previous example, the constant ‘ XIRQInt' isinitialized with the
address of the label ‘ XIRQFuNc'.

Note: All the labels specified as initialization value must be defined, published
(using XDEF) or imported (using XREF) in the assembly source file

The section should now be placed at the expected address. Thisis performed in the
linker parameter file.

Example:

LINK test. abs
NAMES test.o END

SECTI ONS
MY_ROM = READ ONLY 0x0800 TO OxO08FF;
MY_RAM = READ WR TE 0x0A00 TO OxOBFF;

/* Define the menory range for the vector table */
Vector = READ ONLY OxFFF2 TO OxFFFF;

END
PLACEMENT
DEFAULT_RAM I NTO MY_RAM
DEFAULT_ROM I NTO MY_ROM

/* Pl ace the section ‘VectorTabl e’ at the appropriated address. */
Vect or Tabl e | NTO Vect or;
END

IN T Reset Func
ENTR ES

*
END

Note: The statement ‘ Vector = READ_ONLY OxFFF2 TO OxFFFF' defines the
memory range for the vector table.

Note: The statement ‘ Veector Table INTO Vector’ specifies that the section Vector T-
able should be loaded in the read only memory area Vector. This means, the
constant ‘ IRQInt’ will be allocated at address OxFFF2, the constant ‘ XIR-
QInt’ will be allocated at address OxFFF4, and so on. The constant
‘ResetInt’ will be allocated at address OxFFFE.

Note: The statement ‘ENTRIES™* END’ switches smart linking off. If this state-

312 Assembler

ment ismissing in the PRM file, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolutefile.

Note: When developing a banked application, make sure that the code from the
interrupt functionsis located in the non banked memory area.

Initializing the Vector Table in the Source File using an Abso-
lute Section

Initializing the vector tablein the assembly source file requires that all the entriesin
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

Thelabels or functions, which should beinserted in the vector table must be imple-
mented in the assembly source file or an external reference must be available for
them. The vector table can be defined in an assembly source file in an additional
section containing constant variables.

Example:

XDEF Reset Func
Dat aSec: SECTI ON
Dat a: DS. W5 ; Each interrupt increments an el enent of the table.
CodeSec: SECTI ON
; Inplenentation of the interrupt functions.

| RQGFunc:
LDAB #0
BRA int
Xl RQFunc:
LDAB #2
BRA int
SW Func:
LDAB #4
BRA int
QpCodeFunc:
LDAB #6
BRA int
Reset Func:
LDAB #8
BRA entry
DummyFunc:
RTI
int:
LDX #Data

ABX

Assembler 313

INC 0, X

RTI
entry:

LDS #$AFE
| oop: BRA | oop

ORG $FFF2
Definition of the vector table in an absol ute section starting at
addr ess
$FFF2.

IRQnt: DC W1 R@Func
X RQnt: DC. W XI RQFunc
SWint: DC. W SW Func
pCodel nt : DC. W pCodeFunc

OCPReset I nt : DC. WDummyFunc; No function attached to OOP Reset.
d MonResl nt : DC. WDummyFunc; No function attached to 4 ock

Moni t or Reset .
Reset | nt : DC WReset Func

Note: Each constant in the section starting at $FFF2 is defined as a word (2 Byte
constant), because the entry in the vector table are 16 bit wide.

Note: Inthe previous example, the constant ‘ IRQInt’ isinitialized with the address
of the label ‘IRQFunc'.

Note: All the labels specified as initialization value must be defined, published
(using XDEF) or imported (using XREF) in the assembly source file.

Note: The statement ‘ ORG $FFF2' specifies that the following section must start
at address $FFF2.

The linker PRM file looks as follows:
Example:

LINK test. abs
NAMES

test.o
END

SECTI ONS
MY_ROM
MY_RAM

END

PLACEMENT
DEFAULT _RAM I NTO MY_RAM
DEFAULT_ROM I NTO MY_ROM

END

READ CNLY 0x0800 TO Ox08FF;
READ WRI TE 0xO0AD0 TO OxOBFF,

IN T Reset Func

314 Assembler

ENTR ES

*

END

Note: The statement ‘ENTRY * END’ switches smart linking off. If this statement
ismissing in the PRM file, the vector table will not be linked with the appli-
cation, because it is never referenced. The smart linker only links the refer-
enced objects in the absolutefile.

Note: When developing a banked application, make sure that the code from the
interrupt functionsis located in the non banked memory area

Splitting an Application into different Modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules following rules must be followed:

* For each assembly source file, one include file must be created containing the
definition of the symbols exported from this module. For the symbols referring to
code label, asmall description of the interfaceis required.

Example of Assembly File (Testl.asm):

XDEF AddSour ce
XDEF Sour ce

i nitStack: EQU $SAFF

Dat aSec: SECTI ON
Sour ce: DS.B 1
CodeSec: SECTION
AddSour ce:
ADDA Sour ce
STAA Sour ce
RTS

Corresponding Include File(Testl.inc):

XREF AddSour ce
; The function AddSource adds the value stored in the variabl e
; Source to the content of register A The result of the conputation
is stored in the variabl e Source.

I nput Paraneter: register A contains the value, which should be
added to the variabl e Source.

Assembler 315

; Qutput Parameter: Source contains the result of the addition.

XREF Sour ce
; The variable Source is a byte variable.

Example of Assembly File(Test2.asm):

XDEF entry
I NCLUDE "Test1.inc"

initStack: EQU $AFE

CodeSec: SECTI ON

entry: LDS #i ni t St ack
LDAA #$7
JSR AddSour ce
BRA entry

The application . pr mfile should list both object files building the application.
When a section is present in the different object files, the object file sections are
concatenated in a single absolute file section. The different object file sections are
concatenated in the order the object files are specified in the . pr mfile.

Example of PRM File(Test2.prm):

LINK test2.abs /* Nane of the executable file generated. */

NAMES

testl.o

test2.0 /*Nane of the object files building the application.*/
END

SECTI ONS
MY_ROM
MY_RAM

END

READ CN\LY 0x2B00 TO Ox2BFF; /* READ O\NLY nenory area */
READ WR TE 0x2800 TO Ox28FF; /* READ WR TE nernory area */

PLACEMENT
Dat aSec, DEFAULT_RAM | NTO W¥_RAM
/* variables are allocated in MY_RAM */
CodeSec, Const Sec, DEFAULT_ROM | NTO M¥_ROM
/* code and constants are allocated in W_RCOM */
END
INT entry /* Definition of the application entry point. */

VECTCR ADDRESS OXFFFE entry /* Definition of the reset vector. */
Note: The section ‘ CodeSec’ is defined in both object files. In ‘test1.0’, the section

316 Assembler

‘CodeSec’ contains the symbol ‘ AddSource’. In ‘test2.0’, the section
‘CodeSec’ contains the symbol ‘entry’. According to the order in which the
object files are listed in the NAMES bl ock, the function ‘ AddSource’ will be
allocated first and symbol ‘entry’ will be allocated next to it.

Using Direct Addressing mode to access
Symbols

There are different ways to inform the assembler it should use direct addressing
mode on a symbol.

Using Direct Addressing mode to Access External Symbols

External symbols, which should be accessed using the direct addressing mode, must
be declared using the directive XREF.B. Symbols which are imported using X REF
are accessed using the extended addressing mode.

Example:

XREF. B External D r Label
XREF External Ext Label

LDD External DrLabel ; Direct addressing node is used.

LDD External ExtLabel ; Extended addressing node is used.

Using Direct Addressing mode to Access Exported Symbols

Symbols, which are exported using the directive XDEF.B, will be accessed using
the direct addressing mode. Symbols which are exported using XDEF are accessed
using the extended addressing mode.

Example:

XDEF. B D r Label
XDEF Ext Label

LDD DirlLabel ; Drect addressing node is used.

LDD ExtlLabel ; Extended addressing node is used.

Assembler 317

Defining Symbols in the Direct Page

Symbols, which are defined in the predefined section BSCT are always accessed
using direct addressing mode.

Example:

BSCT
DirLabel: DS. B 3
dat aSec: SECTION
ExtLabel: DS. B 5
codeSec: SECTION
LDD DirLabel ; Direct addressing node is used.

LDD ExtlLabel ; Extended addressing node is used.

Using Force Operator

A force operator can be specified in an assembly instruction to force direct or
extended addressing mode.

The supported force operators are:

» < or .B toforce direct addressing mode
» > or .W to force extended addressing mode.

Example:

dat aSec: SECTI ON
|abel: DS.B 5

codeSec: SECTION

LDD <l abel ; Direct addressing node is used.
LDD label.B; Drect addressing nmode is used.

LDD >l abel ; Extended addressing node is used.
LDD label .W; Extended addressing mode is used.

Using SHORT Sections
Symbols, which are defined in a section defined with the qualifier SHORT are

318 Assembler

always accessed using the direct addressing mode.

Example:

short Sec: SECTI ON SHORT
DrlLabel: DS. B 3
dat aSec: SECTI QN
ExtLabel: DS B 5

codeSec: SECTI ON
LDD DirlLabel ; Direct addressing node is used.

LDD ExtlLabel ; Extended addressing node is used.

Assembler Messages 319

Assembler Messages

There are five kinds of messages generated by the assembler:

DISABLED:
Disabled messages are not printed unless they are explicitly enabled.

INFORMATION:
A message will be printed and assembling will continue. Information messages are used to inform
the user about various topics.

WARNING:
A message will be printed and assembling will continue. Warning messages are used to indicate pos-
sible programming errors to the user.

ERROR:
A message will be printed and assembling will be stopped. Error messages are used to indicate ille-
gal usage of the language.

FATAL:
A message will be printed and assembling will be aborted. A fatal message indicates a severe error
which anyway will stop the assembling.

If the assembler prints out a message, the message contains a message code (‘A’ for Assembler)
and a decimal number. This number may be used to search very fast for the indicated message.

All messages generated by the assembler are documented in increasing number order for easy and
fast retrieval.

Each message also has a description and, if available, a short example with a possible solution or
tips to fix a problem.

For each message the type of the message is also noted, e.g. [ERROR] indicates that the message
is an error message.

Al: Unknown message occurred
[FATAL]
Description
The application tried to emit a message which was not defined. This is a internal error
which should not occur. Please report any occurrences to you distributor.
Tips
Try to find out the and avoid the reason for the unknown message.

A2: Message overflow, skipping <kind> messages
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The application did show the number of messages of the specific kind as controlled with
the options , and . Further options of this kind are not dis-
played.
Tips

Use the options , and to change the number of messag-

320

Assembler Messages

A50:

A51:

A52:

Ab64:

AB5:

es.

Input file ‘<file>’ not found

[FATAL]

Description

The Application was not able to find a file needed for processing.

Tips

Check if the file really exits. Check if you are using a file name containing spaces (in this
case you have to quote it).

Cannot open statistic log file <file>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

It was not possible to open a statistic output file, therefore no statistics are generated.
Note: Not all tools do support statistic log files. Even if a tool does not support it, the
message does still exist, but is never issued in this case, of course.

Error in command line <cmd>
[FATAL]

Description
In case there is an error while processing the command line, this message is issued.

Line Continuation occurred in <FileName>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

In any environment file, the character '\' at the end of a line is taken as line continuation.
This line and the next one are handles as one line only. Because the path separation
character of MS-DOS is also '\, paths are often incorrectly written ending with '\'. Instead
use a "' after the last '\' to not finish a line with '\' unless you really want a line continua-
tion.

Example

Current Default.env:

LI BPATH=c: \ net r ower ks\ | i b\
OBJPATH=c: \ met r ower ks\ wor k

Is taken identical as

LI BPATH:C: \ met rower ks\ | i bOBIPATH=c: \ net r ower ks\ wor k
Tips
To fix it, append a . behind the '\'

LI i3PATH:c: \netrowerks\lib\.
OBJPATH=c: \ et r ower ks\ wor k

Note:

Because this information occurs during the initialization phase of the application, the
message prefix might not occur in the error message. So it might occur as "64: Line
Continuation occurred in <FileName>".

Environment macro expansion error '<description>' for <vari-
ablename>

Assembler Messages 321

AGG6:

A1000:

[DISABLE, INFORMATION, WARNING, ERROR]

Description

During a environment variable macro substitution an problem did occur. Possible caus-
es are that the named macro did not exist or some length limitation was reached. Also
recursive macros may cause this message.

Example

Current Default.env:

LI BPATH=${ LI BPATH}

Tips

Check the definition of the environment variable.
Search path <Name> does not exist
[DISABLE, INFORMATION, WARNING, ERROR]
Description

The tool did look for afile which was not found. During the failed search for thefile, a
non existing path was encountered.

Tips

Check the spelling of your paths.

Update the paths when moving a project.

Use relative paths in your environment variables.
Check if network drives are available

Conditional directive not closed
ERROR
Description
One of the conditional blocks is not closed. A conditional block can be opened using
one of the following directives:
IF, IFEQ, IFNE, IFLT, IFLE, IFGT, IFGE, IFC, IFNC, IFDEF, IFNDEF.
Example
| FEQ (defi neConst)
constl: DC. B 1
const2: DC. B 2
Tips
Close the conditional block with an ENDIF or ENDC directive.
Example

| FEQ (defi neConst)
constl: DC.B 1
const2: DC B 2

ENDI F

Be careful:

A conditional block, which starts inside of a macro, must be closed within the same mac-
ro.

Example

The following portion of code generates an error, because the conditional block “IFEQ”
is opened within the macro “MyMacro” and is closed outside from the macro.
MyMacro: MACRO

| FEQ (SaveRegs)
DC.B 1

322

Assembler Messages

A1001:

A1002:

DC.B 1

ENDM

DC.B 1
ENDI F

Conditional else not allowed here
ERROR
Description
A second ELSE directive is detected in a conditional block.
Example
| FEQ (defi neConst)

ELSE
ELSE

ENDI F
Tips
Remove the superfluous ELSE directive.
Example

| FEQ (defi neConst)

ELSE
 ENDIF
CASE, DEFAULT or ENDSW detected outside from a SWITCH

block
[ERROR]

Description

In Avocet compatibility mode, a CASE, DEFAULT or ENDSW directive was found with-
out a previous SWITCH directive.

Note: This message does only occur for assemblers supporting the avocet compatibility
mode.

Example
XXX equ O

; SW TCH xxx
CASE 1
DC. B 100
CASE 2
DC. B 200
CASE 4
DC. B 400

DEFAULT
FAIL 1
ENDSW
Tips
Remove the semicolon in the example.
Make sure that your assembler does support the avocet compatibility mode and that
this mode is switched on.

Assembler Messages 323

A1003:

A1004:

CASE or DEFAULT is missing

[ERROR]

Description

In Avocet compatibility mode, after a SWITCH directive, an expression other than a
CASE or DEFAULT entry was found.

Note: This message does only occur for assemblers supporting the avocet compatibility
mode.

Example
XXX: equ 0

SW TCH xxx
; CASE 1
DC.B O
CASE 2
DC. WO
CASE 4
DC.L O

DEFAULT
FAIL 1
ENDSW
Tips
Remove the semicolon in the example.
Make sure that your assembler does support the avocet compatibility mode and that
this mode is switched on.

Macro nesting too deep. Possible recursion? Stop processing.
(Set level with -MacroNest)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The macro expansion level was below the limit configured with the

Example
In the following example, “\2” was used instead of the indented “/2”. “\2” is taken by the
assembler as second argument, which is not present and therefore it is replaced with
the empty argument. Therefore this example leads to an endless macro recursion.
X_NOPS: MACRO
\ @Nof Nops: EQU \1
IF \ @of Nops >= 1
I F \ @of Nops ==
NOP
ELSE
X_NOPS \ @\of Nops\ 2
X_NOPS \ @Nof Nops- (\ @Nof Nops\ 2)

ENDI F
ENDI F
ENDM
X_NOPS 17
Tips
Use the to configure the macro expansion level.

In the above example, use /2 to get the correct macro:
X_NOPS: MACRO

324

Assembler Messages

A1051:

A1052:

\ @Nof Nops: EQU \1
I F \ @of Nops >= 1
IF \ @of Nops == 1
NOP
ELSE
X_NOPS \ @\of Nops/ 2
X_NOPS \ @\of Nops- (\ @of Nops/ 2)
ENDI F
ENDI F
ENDM

X_NOPS 17

See also

Zero Division in expression
[DISABLE, INFORMATION, WARNING, ERROR
Description
A zero division is detected in an expression.
Example
label: EQU O
| abel 2: EQU $5000

DC (I abel 2/1 abel)
Tips
Modify the expression or specify it in a conditional assembly block.
Example

label: EQU O
| abel 2: EQU $5000
I FNE (I abel)
DC (| abel 2/1 abel)
ELSE
DC | abel 2
ENDI F

Right parenthesis expected

[ERROR]

Description

A right parenthesis is missing in an assembly expression.
Example

variable: DS. W1

| abel 1: EQU (2*4+6

| abel 3: EQU LOWvari abl e

| abel 4: EQU HI GH(vari abl e

Tips

Insert the right parenthesis at the correct position.
Example

variable: DS.W1

| abel 1: EQU (2*4+6)

| abel 3: EQU LOW vari abl e)
| abel 4: EQU H GH(vari abl e)

Assembler Messages 325

A1053:

A1054:

A1055:

Left parenthesis expected

[ERROR]

Description

A left parenthesis is missing in an assembly expression.
Example

variable: ds.w 1

| abel 1: EQU LOW vari abl e)

| abel 2: EQU HI GH vari abl e)

Tips

Insert the left parenthesis at the correct position.
Example

| abel 1: EQU LOWvari abl e)
| abel 2: EQU HI GH(vari abl e)

References on non-absolute objects are not allowed when op-
tions -FA1 or -FA2 are enabled
[ERROR]
Description
A reference to a relocatable object has been detected during generation of an absolute
file by the assembler.
Example
XREF ext Dat a
Dat aSec: SECTI ON
dat al: DS. W1

ORG $800
entry:

DC. W ext Dat a

DC. W dat al+2
Tips

When you are generating an absolute file, your application should be encoded in a sin-
gle source file, and should only contain any relocatable symbol.

So in order to avoid this message, define all your section as absolute section and re-
move all XREF directives from your source file.

Example

ORG $B00
dat al: DS. W1

ORG $800
entry:

DC. W dat al+2
Error in expression
[ERROR]
Description
An error has been discovered in an expression while parsing it.
Exanpl e
CodeSec2: SECTI ON
Entry2:

LDAA #$08

| abel : JW (Entry2 + 1

326

Assembler Messages

A1056:

A1057:

A1058:

A1059:

A1060:

A1061:

Tips
Correct the expression.

Error at end of expression
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An error has been detected by the assembler at the end of the read expression.

Example
char: SET 1 this is a comment
Tips
Remove the not correct symbol at the end of line or insert a comment start “;".
Example
char: SET 1 ;this is a comrent

Cutting constant because of overflow
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A constant was cutted because of an overflow. Only the lower bits were used to gener-
ate the output.
Example
DC $123456789
Tips
Only use 32 bit constants. Use several DC’s to produce larger values.
Illegal floating point operation
[DISABLE, INFORMATION, WARNING, ERROR
Description
An illegal floating point operation other than unary minus or unary plus has been detect-
ed.

I=is taken as EQUAL
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The != operator is taken as equal. This behavior is different from the C language or the
usual assembler behavior. The behavior is caused by the . Disable the
message, if you are aware of the different semantic

See also

Implicit comment start

[DISABLE, INFORMATION, WARNING, ERROR]

Description

With the alternate comment syntax of the option , this message is
issued if the ignored part does not start with a star (“*) or with a semicolon (*;").

See also

Floating Point format is not supported for this case
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The floating point value is not supported at this place.

Assembler Messages 327

A1062:

A1101:

A1103:

Floating Point number expected
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The assembler did expect a floating point value, but he found an expression of a differ-
ent type.

Note: Not all assemblers do support floating point constants. Assemblers not supporting
floating point do not issue this message.

Example

; The example only works with assemblers supporting floating point with a dc.f directive
label

dc.f label

lllegal label: label is reserved

[ERROR]

Description

A reserved identifier is used as label. Reserved identifiers are the mnemonics associ-
ated with target processor registers and some additional
Example

X: SET 3

Tips

Modify the name of the label to a identifier which is not reserved.
Example

_X: SET 3

See also

lllegal redefinition of label
[ERROR]

Description

The label specified in front of a comment or an assembly instruction or directive, is de-
tected twice in a source file.

Example

Dat aSecl: SECTI ON

| abel 1: DS. W2

| abel 2: DS. L 2

CodeSecl: SECTI ON

Entry: LDS #$4000
LDX #l abel 1
CPX #3$500
BNE | abel 2

| abel 2: RTS

Tips

Modify the label names, in order to have unique label identification in each assembly
file.

Example:

Dat aSecl1l: SECTI ON

Dat aLabl: DS. W 2

Dat aLab2: DS.L 2

328

Assembler Messages

A1104:

A1201:

CodeSecl: SECTION

Entry: LDS #$4000
LDX #Dat aLabl
CPX #$500
BNE CodelLab2

CodeLab2: RTS

Undeclared user defined symbol: <symbolName>
[ERROR]

Description
The label <symbolName> is referenced in the assembly file, but it is never defined.
Example
Entry:
LDX #56
STX #Vari abl e
RTS
Tips
The label <symbolName> must be either defined in the current assembly file or speci-
fied as an external label.

Example:
XREF Vari abl e

Entry:
LDX #56
STX #Vari abl e
RTS

Label <labelName> referenced in directive ABSENTRY. Only la-
bels defined in a code segment are allowed in the ABSENTRY
directive
[ERROR]
Description
The label specified in the directive ABSENTRY is an EQU label or is located in a data
section. The label specified in ABSENTRY must be a valid label defined in a code sec-
tion.
Example

ABSENTRY const
const: EQ $1000

ORG const

DC. B 1

DC. B 2
Tips
Specify a label defined in a code section in ABSENTRY or remove the directive ABSEN-
TRY.

Example

ABSENTRY entry
const: EQ $1000
ORG const

Assembler Messages 329

A1251:

A1252:

A1253:

A1301:

entry: DC B 1
DC. B 2

Cannot open object file: Object file name too long
[ERROR]

Description

The object file is derived from the source file name by changing the extension to “.0". If
the source file name is extremely long, then this may fail.

Tips

Use shorter filenames.

The exported label <name> is using an ELF extension
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is only issued when using the ELF object file format. | can be ignored
when using the SmartLinker, however, foreign linker may not know this extension and
therefore the linking might fail.

The exported label <name> is using an ELF extension for exported labels, which are
defined as imported label plus offset. This situation cannot be expressed in a standard
ELF symbol table, so the assembler is generating a symbol with type STT_LOPROC.
This message is disabled by default, so it does not occur unless it is explicitly enabled.
When setting this message to an error, code containing such cases cannot be assem-
bled.

Example

XREF | mport edLabel

Export edLabel : EQU I nportedLabel + 1

XDEF ExportedLabel

Tips

Set this message to an error when you plan to use a foreign linker. Adapt the source
code so that this case does not occur.

Limitation: code size > <SizeLimit> bytes

ERROR

Description

The assembler is running in demo mode and the code size limitation was reached.
Therefore the assembly process is stopped.

Tips

Make sure the license is correctly installed.

Check the about box about the current license state.

Structured type redefinition: <TypeName>

[ERROR]

Description

The same name has been associated with two different structured types.
<TypeName> is the name of the structured type, which is defined twice.

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
fieldl: DS. W1

field2: DS. w1

330

Assembler Messages

A1302:

A1303:

ENDSTRUCT
XREF nyDat a: myType

nmyType: STRUCT

field3: DS.B 1
field4: DS.B 3
ENDSTRUCT
Tips
Change the name of one of the structured type.
Example
myTypel: STRUCT
fieldl: DS. W1
field2: DS. W1

ENDSTRUCT
XREF nyDat a: nyTypel

myType2: STRUCT

field3: DS.B 1
field4: DS.B 3
ENDSTRUCT

Type <TypeName> is previously defined as label

[ERROR]

Description

The identifier used to identify a structured type was previously used as a label.
<TypeName> is the name of the structured type, which is already used as label name.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example

myType: DS. W3

myType: STRUCT

fieldl: DS. w1
field2: DS. W1
ENDSTRUCT
Tips
Change the name of one of the structured type or of the label .
Example

myVar : DS. W3

myType: STRUCT

fieldl: DS. W1

field2: DS. W1
ENDSTRUCT

No type defined
[ERROR]
Description

A directive only allowed inside of s structured type definition was found without a leading
STRUCT or UNION.

Assembler Messages 331

A1304:

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example

fieldl: DS. W1

field2: DS. W1
ENDSTRUCT

Tips

Check the STRUCT directive at the start.

Example

myType: STRUCT

fieldl: DS. W1

field2: DS. W1
ENDSTRUCT

Field <FieldName> is not declared in specified type

[ERROR]

Description

The field specified is not part of the structured type associated with the variable ad-
dressed.

<FieldName> is the name of the field addressed in the variable.

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example
myType: STRUCT
fieldl: DS. W1
field2: DS. W1
ENDSTRUCT
XREF nyDat a: nyType
XDEF entry
CodeSec: SECTI ON
entry:
NOP
NOP
LDX nyDat a: fi el d33
Tips
Change the name of the field to an existing field or define the field in the structured type.
Example:
myType: STRUCT
fieldl: DS. W1
field2: DS. W1
ENDSTRUCT
XREF nyDat a: mnyType
XDEF entry
CodeSec: SECTI ON
entry:
NOP
NOP

LDX nyDat a: fi el d2

332

Assembler Messages

A1305:

A1401:

Type name expected

[ERROR]

Description

The symbol specified after a TYPE directive is not a previous defined structured type.
Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example

myType: STRUCT
fieldl: DS. W1
field2: DS. W1

ENDSTRUCT

Dat aSec: SECTI ON
myData: TYPE yType

XDEF entry
CodeSec: SECTI ON
entry:

NOP

NOP

LDX nmyDat a: fiel d2
Tips
Change the name of the type for a valid type name.
Example:
myType: STRUCT
fieldl: DS. w1
field2: DS. W1

ENDSTRUCT

Dat aSec: SECTI ON
nyData: TYPE nyType

XDEF entry
CodeSec: SECTI ON
entry:

NOP

NOP

LDX nyDat a: fi el d2

Value out of range -128..127
[ERROR]

Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed byte (smaller than -128 or bigger than 127). An 8 bit signed PC
relative offset is expected in following instructions:
«Branch instructions
BCC, BCS, BEQ, BGE, BGT, BHI, BHS, BLE, BLO, BLS, BLT, BMI, BNE, BPL,
BRA, BRN, BSR, BVC, BVS
«Third operand in following instructions:
BRCLR, BRSET

Assembler Messages 333

A1402:

Example for branch instruction
Dat aSec: SECTI ON

var 1: DS. W1
var 2: DS. W 2
CodeSec: SECTI ON

LDD varl

BNE | abel
dummyBl : DCB. B 200, $A7
| abel STD var 2

Tips
If you have used one of the branch instructions, use the corresponding long-branch in-
struction.

Example:
Dat aSec: SECTI ON
var 1: DS. W1
var 2: DS. W2
CodeSec: SECTI ON
LDD varl
LBNE | abel
dummyBl : DCB. B 200, $A7
| abel STD var 2

Example for BRCLR instruction
Dat aSec: SECTI ON

var 1: DS. W 100
CodeSec: SECTI ON

LDX #varl
BRCLR 3, X, #$05, |abel
dummyBl : DCB. B 200, $A7
| abel STD var 2
Tips
If you have used a BRSET or BRCLR, you should replace the BRCLR instruction by fol-
lowing sequence of code:
LDAB <first operand in the BRCLR>
ANDB <second operand in BRCLR>
LBEQ <third operand in BRCLR>

Example:

Dat aSec: SECTI ON
var 1: DS. W1
var 2: DS. W 2

CodeSec: SECTI ON

LDX #varl

LDAB 3, X

ANDB #$05

LBEQ | abel
dummyBl : DCB. B 200, $A7
| abel STD var 2

Value out of range -32768..32767

334 Assembler Messages
[ERROR]
Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed word (smaller than -32768 or bigger than 32767).
Note: Not all assemblers do have instructions with 16 bit PC relative addressing mode.
Such assemblers will not issue this message at all.
A 16 bit signed PC relative offset is expected in following instructions:
sLong-branch instructions
LBCC, LBCS, LBEQ, LBGE, LBGT, LBHI, LBHS, LBLE, LBLO, LBLS, LBLT,
LBMI, LBNE, LBPL, LBRA, LBRN, LBSR, LBVC, LBVS
Example
Dat aSec: SECTI ON
var 1: DS. w1
var 2: DS. W 2
CodeSec: SECTI ON
LDD varl
LBNE | abel
dummyBl : DCB. B 20000, $A7
DCB. B 20000, $A7
| abel STD var 2
Tips
Replace the long-branch instruction by following sequence of code:
<I nverse branch instruction> |abel 1
JMP | abel
| abel 1:
Example:
Dat aSec: SECTI ON
var 1: DS. w1
var 2: DS. W 2
CodeSec: SECTI ON
LDD varl
BEQ I abell
JWP | abel
| abel 1:
dunmyBl : DCB. B 40000, $A7
| abel STD var 2
A1405: PAGE with initialized RAM not supported
[ERROR]
Description

The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format.

In the ELF format, it is allowed and this message is not used.

Note: not all assemblers do support the PAGE operator.

Example

cstSec: SECTI ON

pgEntry DC. B PAGE(entry)

adrEntry: DC. Wentry

codeSec: SECTI ON

entry:

Assembler Messages 335

A1406:

A1407:

A1408:

A1410:

NOP

NOP
Tips
You can load the whole address from the entry label using a DC.L directive. The only
draw back is that you have allocated 4 byte to store the address instead of 3 bytes.

Example

cstSec: SECTI ON
adrEntry: DC. L entry
codeSec: SECTI ON
entry:

NOP

NOP

HIGH with initialized RAM not supported

[ERROR]

Description

The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format.

In the ELF format, it is allowed and this message is not used.
Note: not all assemblers do support the HIGH operator.

Example
MyDat a: SECTI ON
table: DS.W1
DC. B hi gh(tabl e)

LOW with initialized RAM not supported

[ERROR]

Description

The Macro Assembler does not support the use of the LOW operator with initialized
RAM in the HIWARE format.

In the ELF format, it is allowed and this message is not used.
Note: not all assemblers do support the LOW operator.

Example
MyDat a: SECTI ON
table: DS.W1
DC. B | ow(t abl e)

Out of memory, Code size too large

[ERROR]

Description

The assembler runs out of memory because of a very large section.

Note: This assembler version does no longer have the 32k size limitation of previous
versions.

EQU or SET labels are not allowed in a PC Relative addressing
mode.

[ERROR]

Description

An absolute EQU or SET label has been detected in an indexed PC relative addressing
mode.

This is not legal in a relocatable expression.

Note: Not all assemblers do have special PC Relative addressing modes. Such assem-

336 Assembler Messages
blers will not issue this message at all.
Example
| abel : EQU $FF30
dat aSec: SECTI ON
dat a: DS. W1
codeSecl: SECTI ON
entry:
LDD | abel, PCR
STD data
Tips
Make the section an absolute section.
Example of Merging sections:
| abel : EQU $FF30
dat aSec: SECTI ON
dat a: DS. w1
ORG $C000
entry:
LDD | abel, PCR
STD data
A1411: PC Relative addressing mode is not supported to constants
[ERROR]
Description
An absolute expression has been detected in an indexed PC relative addressing mode.
This is not legal in a relocatable expression.
Not all assemblers do have special PC Relative addressing modes. Such assemblers
will not issue this message at all.
Example
dat aSec: SECTI ON
dat a: DS. w1
codeSecl: SECTI ON
entry:
LDD $FF35, PCR
STD data
Tips
Make the section an absolute section.
Example of Merging sections:
dat aSec: SECTI ON
dat a: DS. w1
ORG $C000
entry:
LDD $FF35, PCR
STD data
A1412: Relocatable object <Symbol>not allowed if generating absolute

file
[Error]
Description
No relocatable objects are allowed if the user requests the generation of an absolute
file. This message occurs primarily for objects in the default (relocatable) section.
Example

ABSENTRY mai n

Assembler Messages 337

A1413:

Al1414:

A1415:

A1416:

main: DC.B 1
DC. B 2
Tips
Place all objects into absolute sections.
Example
ABSENTRY mai n
ORG $1000
main: DC.B 1
DC. B 2

Value out of relative range

[Disabled, Information, Warning, Error

Description

Some value did not fit into the operand field of an instruction. This message can be dis-
abled if the value should be just truncated.

Tips

Check if you can place the code and the referenced object closer together. Try to gen-
erate a smaller displacement. If this is not possible, consider using another instruction
or addressing mode.

Cannot set fixup to constant

[Error]

Description

The assemble cannot set a fixup because the referenced object is just a constant rather
then an object. One case when the assembler must generate a fixup are PCR relative
accesses in relocatable code. Then the assembler does need an object which refers to
the accessed address.

Tips

Check why the assembler has to set a fixup instead of just using a constant.
Cutting fixup overflow

[Disabled, Information, Warning, Error]

Description
A constant value does not fit into a field and is therefore cutted.
Example

DC. B Label +1
Label : EQU $ff

DC. B Label +1
Tips
Use a larger field, if necessary.

DC. W Label +1
Label : EQU $ff

DC. W Label +1

Absolute section starting at <Address> size <Size> overlaps
with absolute section starting at <Address>
[Disabled, Information, Warning, Error]
Description
Two absolute sections are overlapping each other.
Example
ORG $1000
DC.BO0,1,2,3

338

Assembler Messages

A1417:

A1502:

A1503:

; address $1004

DA: SECTI ON
DC.B 1

ORG $1001
DC.BO0,1,2,3
; address $1005
Tips
Use non overlapping areas, whenever possible.
Use relocatable sections if you want to split up a memory area into several modules.
Calculate the start address of the second with the end address of the first, if they are in
the same assembly unit.
Example
ORG $1000
DC.B 0,1,2,3
; address $1004
Sect End: EQU *

DA: SECTI ON
DC.B 1

ORG Sect End
DC.BO0,1,2,3
; address $1008

Value out of possible range

[Disabled, Information, Warning, Error

Description

A constant value does not fit into a field. This message is used to stop the assembly for
some fixup overflow cases.

Tips:

Usually this message is used for branch distances, if so, try to use a branch with a larger
range.

Reserved identifiers are not allowed as instruction or directive
[ERROR]

Description

The identifier detected in an assembly line instruction part is a

See also

Error in option -D: <Description>

[Disabled, Information, Warning, Error

Description

An option -D was used with illegal content. The format for -D is “-D” name [“="value].
The name must be a legal for a label. The value must be a number. There must be a
number after an equal (“=").

Example

Not a legal label name:

-D1

After a =, the there must be a value:

- DLabel Nanme=

Assembler Messages 339

A1601:

A1602:

A1603:

A1604:

Unexpected text at the end:
- D’ Label Nanel=1 1"
See also

Option -D

Label must be terminated with a ":
[ERROR]

Description

This message is issued only when labels must be terminated with a colon. For some
targets, this is not required. Then this message is not issued.

This message is only generated when the MCUasm compatibility is switched on. In this
case, all labels must be terminated with a semi-colon (:) character.

Invalid character at end of label (<LabelName>): semicolon or

space expected
[ERROR]
Description
The specified label is terminated by an invalid character. The following characters are
allowed in a label:

« All alphabetical characters (‘a’.. ‘', ‘A’, 'Z’).

¢ All numerical characters (‘0" .. ‘9").

«‘and ‘.
<LabelName> is the name of the wrong label detected (including the invalid character).
Example
Dat al# DS.B 1
Dat a2#6 DS.B 1
Tips
Remove the invalid character or replace it by a

Example

Dat al DS.B 1
Data2_ 6 DS.B 1

Directive, instruction or macro name expected: <SymbolName>
detected

[ERROR]

Description

The symbol detected in the operation field is not a valid directive, instruction or macro
name.

<SymbolName> is the name of the invalid string detected in the operation field.

Example

| abel : XXX 3
| abel 2: | abel
Tips

Replace the specified symbolName by a valid instruction, directive or macro name.

Invalid character detected at the beginning of the line: <Charac-
ter>

[ERROR]

Description

The character detected on column 1 is not valid. For the macro assembler everything
starting on column 1 is supposed to be a label. The following characters are allowed at

340 Assembler Messages

the beginning of a label:
« All alphabetical characters (‘a'.. ‘z’, ‘A’, ‘Z’).

e ‘land ‘.
<Character> is the character detected on column 1.
Example
@ abel : DS.B 1
4l abel 2: DS.B 2
Tips
Replace the specified characterbya ‘.’ ora‘_".
Example
_label : DS.B 1

. | abel 2: DS.B 2

A1605: Invalid label name: <LabelName>
[ERROR]
Description
The character detected at the beginning of a label is not valid. The following characters
are allowed at the beginning of a label:
« All alphabetical characters (‘a'.. ‘z’, ‘A’, ‘Z’).

«and ‘.
<LabelName> is the label name detected.
Example
#l abel : DS.B 1
Tips
Replace the specified character bya ‘.’ ora‘_".
Example
_label : DS.B 1
A2301: Label is missing
[ERROR]
Description

A label name is missing on the front of an assembly directive requiring a label. These
directives are:
SECTION, EQU, SET

Example
SECTI ON 4
EQU $67
SET $77
Tips
Insert a label in front of the directive.
Example
codeSec: SECTION 4

nyConst: EQU $67

r'ryéét V: SET $77

A2302: Macro name is missing
[ERROR]

Assembler Messages

341

Description

A label name is missing on the front of a MACRO directive.

Example
My Dat a:
Dat al:

My Code:
Entry:

Tips

Insert a label in front of the MACRO directive.

Example

My Dat a:
Dat al:
al I ocChar:

My Code:
Entry:

SECTI ON
DS.B 1
MACRO
DC.B\1
ENDM

SECTI ON

SECTI ON
DS.B 1
MACRO
DC.B\1
ENDM

SECTI ON

A2303: ENDMis illegal

[ERROR]
Description

A ENDM directive is detected outside of a macro.

Example

My Dat a:
Dat al:

al | ocChar:

My Code:
Entry:

Tips

SECTI ON
DS.B 1
MACRO
DC.B\1
ENDM

SECTI ON

ENDM

Remove the superfluous ENDM directive.

Example

My Dat a:
Dat al:
al | ocChar:

My Code:
Entry:

SECTI ON
DS.B 1
MACRO
DC.B\1
ENDM

SECTI ON

A2304: Macro definition within definition

[ERROR]

342 Assembler Messages
Description
A macro definition is detected inside of another macro definition. The macro assembler
does not support this.
Example
al | ocChar: MACRO
al ocWord: MACRO
DC. W\1
ENDM
DC.B\1
ENDM
Tips
Define the second macro outside from the first one.
Example
al | ocChar: MACRO
DC.B\1
ENDM
al l ocWord: MACRO
DC. W\ 1
ENDM
A2305: lllegal redefinition of instruction or directive name
[ERROR]
Description
An assembly directive or a mnemonic has been used as macro name. This is not al-
lowed to avoid any ambiguity when the symbol name is encountered afterward. The
macro assembler cannot detect if the symbol refers to the macro or the instruction.
Example
DC: MACRO
DC.B\1
ENDM
Tips
Change the name of the macro to an unused identifier.
Example
al | ocChar: MACRO
DC.B \1
ENDM
A2306: Macro not closed at end of source
[ERROR]
Description

An ENDM directive is missing at the end of a macro. The end of the input file is detected
before the end of the macro.

Example
al | ocChar: MACRO

DC.B\1
nyDat a: SECTI ON SHORT
char 1: DS.B 1
char 2: DS.B 1
nyConst : SECTI ON SHORT
initi1: DC. B $33

init2: DC. B $43

Assembler Messages 343

A2307:

A2308:

A2309:

Tips

Insert the missing ENDM directive at the end of the macro.
Example
al | ocChar: MACRO
DC.B\1

ENDM
nyDat a: SECTI ON SHORT
char1: DS.B 1
char 2: DS.B 1
myConst : SECTI ON SHORT
initl: DC. B $33
init2: DC. B $43

Macro redefinition
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The input file contains the definition of two macros, which have the same name.
Example
all oc: MACRO
DC.B\1
ENDM
al l oc: MACRO
DC. W\1
ENDM
Tips
Change the name of one of the macros to generate unique identifiers.
Example

al | ocChar: MACRO
DC.B\1
ENDM
al l ocWword: MACRO
DC. W\1
ENDM

File name expected
[ERROR]

Description
A file name is expected in an INCLUDE directive.

Example
| NCLUDE 1234

Tips
Specify a file name after the include directive.
Example
I NCLUDE "1234" ; file is nanmed "1234"
File not found
[ERROR]

Description
The assembler cannot find the file, which name is specified in the include directive.

Assembler Messages

A2310:

A2311:

Tips

If the file exist, check if the directory where it is located is specified in the GENPATH
environment variable.

First check if your project directory is correct. A file “default.env” should be located
there, where the environment variables are stored.

The macro assembler looks for the included files in the working directory and then in
the directory enumerated in the GENPATH environment variable.

If the file do not exist, create it or remove the include directive.

Size specification expected
[ERROR]

Description
An invalid size specification character is detected in a DCB, DC, DS, FCC, FCB, FDB,
FQB, RMB, XDEF or XREF, directive.
For XDEF and XREF directives, valid size specification characters are:
« .B: for symbols located in a section where direct addressing mode can be used.
« .\W: for symbols located in a section where extended addressing mode must be
used.
For DCB, DC, DS, FCC, FCB, FDB, FQB and RMB directives, valid size specification
characters are:
« .B: for Byte variables.
« .W: for Word variables.
« .L: for Long variables.
Example
Dat aSec: SECTI ON
label 1: DS.Q 2

Const Sec: SECTI ON

| abel 2: DC.1 3, 4, 66

Tips

Change the size specification character to a valid one.
Example

Dat aSec: SECTI ON
| abel 1: DS. W2

Const Sec: SECTI ON
| abel 2: DC. W3, 4, 66

Symbol name expected
[ERROR]
Description
A symbol name is missing after a XDEF, XREF, IFDEF or IFNDEF directive.
Example
XDEF $5645
XREF ; This is a comment
CodeSec: SECTI ON

| FDEF $5634

ENDI F
Tips
Insert a symbol name at the requested position.
Example

Assembler Messages

345

XDEF export edSymbol
XREF i nport edSynbol ;

This is a comment

The maximum number of nested include files has been exceeded. The Macro Assem-

CodeSec: SECTI ON
export edSynbol :
| FDEF changeBank
ENDI F
A2312: String expected
[ERROR]
Description
A character string is expected at the end of a FCC, IFC or IFNC directive.
Example
one: MACRO
IFC\1,""
DS.B 1
ELSE
DC.B\1
ENDI F
ENDM
one $42
Tips
Insert a character string at the requested position.
Example
one: MACRO
IFC "\ 1", ""
DS.B 1
ELSE
DC.B\1
ENDI F
ENDM
one $42
A2313: Nesting of include files exceeds 50
[ERROR]
Description
bler supports up to 50 nested include files.
Tips
Reduce the number of nested include file to 50.
A2314: Expression must be absolute
[ERROR]
Description

An absolute expression is expected at the specified position.
1. Assembler directives expecting an absolute value are:
« OFFSET, ORG, ALIGN, SET, BASE, DS, LLEN, PLEN, SPC, TABS, IF, IFEQ, IF-

NE, IFLE, IFLT, IFGE, IFGT.

2. The first operand in a DCB directive must be absolute:

Example
Dat aSec: SECTI ON
label 1: DS. W1

346 Assembler Messages
| abel 2: DS. W2
label 3: EQU 8
codeSec: SECTI ON
BASE | abel 1
ALI GN | abel 2
Tips
Specify an absolute expression at the specified position.
Example
Dat aSec: SECTI ON
label1: DS.W1
| abel 2: DS. W2
| abel 3: EQU 8
codeSec: SECTI ON
BASE | abel 3
ALIGN 4
A2316: Section name required
[ERROR]
Description
A SWITCH directive is not followed by a symbol name. Absolute expressions or string
are not allowed in a SWITCH directive.
The symbol specified in a SWITCH directive must refer to a previously defined section.
Example
dat aSec: SECTI ON
label1: DS.B 1
codeSec: SECTI ON
SW TCH $A344
Tips
Specify the name of a previously define section in the SWITCH instruction.
Example
dat aSec: SECTI ON
label1: DS.B 1
codeSec: SECTI ON
SW TCH dat aSec
A2317: lllegal redefinition of section name

[ERROR]

Description

The name associated with a section is previously used as a label in a code or data sec-
tion or is specified in a XDEF directive.

The macro assembler does not allow to export a section name, or to use the same
name for a section and a label.

Assembler Messages

347

Example
dat aSec: SECTI ON
sec_Label : DS. W3

sec_Label : SECTI ON

Tips

Change to name of the section to a unique identifier.
Example

dat aSec: SECTI ON
dat _Label : DS. W3
sec_Label : SECTI ON

A2318: Section not declared

[ERROR]

Description

The label specified in a SWITCH directive is not associated with a section.
Example

dat aSec: SECTI ON

| abel 1: DS.B 1
codeSec: SECTI ON
SW TCH daat Sec

Tips

Specify the name of a previously define section in the SWITCH instruction.
Example

dat aSec: SECTI ON

| abel 1: DS.B 1
codeSec: SECTI ON
SW TCH dat aSec

A2319: No section link to this label
[ERROR]

Description

A label without corresponding section was detected. This error usually occurs because

of other errors before.

Tips

Correct all errors before this one first.
A2320: Value too small

[ERROR]

Description

The absolute expression specified in a directive is too small.
This message can be generated in following cases:

Assembler Messages

A2321:

A2323:

« The expression specified in an ALIGN, DCB or DS directive is smaller than 1.

« The expression specified in a PLEN directive is smaller than 10. A header is gener-
ated on the top of each page from the listing file. This header contains at least 6
lines. So a page length smaller than 10 lines does not make many sense.

« The expression specified in a LLEN, SPC or TABS directive is smaller than 0 (neg-

ative).
Example
PLEN 5

LLEN -4

dat aSec: SECTI ON
ALIGN O

labell: DS.W 0

Tips

Modify the absolute expression to a value in the range specified above.

Example
PLEN 50
LLEN 40
dat aSec: SECTI ON
ALIGN 8

label1: DS.W 1

Value too big
[ERROR]
Description

The absolute expression specified in a directive is too big.
This message can be generated in following cases:

« The expression specified in an ALIGN directive is bigger than 32767.
« The expression specified in a PLEN directive is bigger than 10000.
« The expression specified in a LLEN directive is bigger than 132.

« The expression specified in a SPC directive is bigger than 65.

* The expression specified in a TABS directive is bigger than 128.

Example
PLEN 50000
LLEN 200
dat aSec: SECTI ON
ALI GN 40000

Tips

Modify the absolute expression to a value in the range specified above.

Example
PLEN 50
LLEN 40
dat aSec: SECTI ON
ALIGN 8
Label is ignored
[DISABLE, INFORMATION, WARNING, ERROR]

Assembler Messages 349

A2324:

Description

A label is specified in front of a directive, which does not accept any label. The macro

assembler ignores such label.

These labels cannot not be referenced anywhere else in the application. Labels will be

ignored in front of following directives:

« ELSE, ENDIF, END, ENDM, INCLUDE, CLIST, ALIST, FAIL, LIST, MEXIT,

NOLIST, NOL, OFFSET, ORG, NOPAGE, PAGE, LLEN, PLEN, SPC, TABS,
TITLE, TTL.

Example
CodeSec: SECTI ON

| abel : PLEN 50

| abel 2: LI ST

Tips

Remove the label which is not required. If you need a label at that position in a section,
define the label on a separate line.

Example
CodeSec: SECTI ON

| abel :
PLEN 50
| abel 2:

LI ST

lllegal Base (2,8,10,16)

[ERROR]

Description

An invalid base number follows a BASE directive. The valid base numbers are 2, 8, 10
or 16.

The expression specified in a BASE directive must be an absolute expression and must
match one of the values enumerated above.

Example
BASE 67
dat aSec: SECTI ON
| abel : EQU 35
BASE | abel
Tips

Specify one of the valid value in the BASE directive.
Example
BASE 16

dat aSec: SECTI ON
| abel : EQU 8

BASE | abel

350

Assembler Messages

A2325:

A2326:

Comma or Line end expected
[ERROR]

Description

An incorrect syntax has been detected in a DC, FCB, FDB, FQB, XDEF, PUBLIC, GLO-
BAL, XREF or EXTERNAL directive.

This error message is generated when the values enumerated in one of the directive
enumerated above are not terminated by an end of line character, or when they are not
separated by a ‘,” character.

Example
XDEF datalLabl datalLab2
XREF bbl, bb2, bb3, bb4 This is a comment

dat aSec: SECTI ON

datalLabl: DCCB2 | 4| 6| 8

dat aLab2: FCB 45, 66, 88 | abel 3: DC. B 4

Tips

Use the ‘" character as separator between the different items in the list or insert an end
of line at the end of the enumeration.

Example

XDEF datalLabl, datalab2
XREF bbl, bb2, bb3, bb4 ;This is a coment

dat aSec: SECTI ON
datalLabl: DC.B 2, 4, 6, 8
dat aLab2: FCB 45, 66, 88
| abel 3: DC.B 4

Label <Name> is redefined
[ERROR]

Description
A label redefinition has been detected. This message is issued when:
« The label specified in front of a DS, DCB, FCC directive is already defined.
« One of the label names enumerated in a XREF directive is already defined.
« The label specified in front of an EQU directive is already defined.
« The label specified in front of a SET directive is already defined and not associated
with another SET directive.
¢ A label with the same name as an external referenced symbol is defined in the
source file

Example

Dat alSec: SECTI ON

| abel 1: DS.W 4

Dat a2Sec: SECTI ON

| abel 1: DS.W 1

Tips

Modify your source code to use unique identifiers.
Example

Dat alSec: SECTI ON
dl_l abel1: DS W 4

Assembler Messages 351

A2327:

A2328:

A2329:

Dat a2Sec: SECTI ON
d2_labell: DS W 1

ON or OFF expected

[ERROR]

Description

The syntax for a MLIST or CLIST directive is not correct. These directives expects a
unique operand, which can take the value ON or OFF.

Example

CodeSec: SECTI ON

CLI ST
Tips
Specify either ON or OFF after the MLIST or CLIST directive.
Example

CodeSec: SECTI ON
CLI ST ON

Value is truncated

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The size of one of the constants listed in a DC directive is bigger than the size specified
in the DC directive.

Example

Dat aSec: SECTI ON

cst 1: DC. B $56, $784, $FF
cst 2: DC. W $56, $784, $FF5634
Tips

Reduce the value from the constant to a value fitting in the size specified in the DC di-
rective.

Example

Dat aSec: SECTI ON

cst1: DC. B $56, $7, $84, $FF
cst 2: DC. W $56, $784, $FF, $5634
FAIL found

[ERROR]

Description

The FAIL directive followed by a number smaller than 500 has been detected in the
source file.

This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition

Example
LE. B: MACRO
IFC "\ 1", "
FAIL "no data" ; error

MEXI T

352

Assembler Messages

A2330:

A2332:

ENDI F
IFC "\ 2", ""
FAIL 600 ;. war ni ng
DC.B \1
MEXI T
ENDI F
I FNC "\ 3",""
FAIL 400 ;oerror
ENDI F
DC.B \2,\1
ENDM

LE. B $12, $34, $56

String is not allowed
[ERROR]

Description

A string has been specified as initial value in a DCB directive. The initial value for a con-
stant block can be any byte, half-word or word absolute expression as well as a simple
relocatable expression.

Example

Cst Sec: SECTI ON

| abel: DCB.B 10, "aaaaaa"

Tips

Specify the ASCII code associated with the characters in the string as initial value.
Example

Cst Sec: SECTI ON
| abel: DCB.B 10, $61

FAIL found
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The FAIL directive followed by a number bigger than 500 has been detected in the
source file.

This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition

Example
LE. B: MACRO
IFC "\ 1",""
FAIL "no data" ; error
MEXI T
ENDI F
IFC "\ 2", ""
FAIL 600 ;. war ni ng
DC.B \1
MEXI T
ENDI F
I FNC "\ 3", ""
FAIL 400 ; error
ENDI F

Assembler Messages

353

A2333:

A2335:

A2336:

DC.B \2,\1
ENDM
LE. B $12

Forward reference not allowed
[ERROR]
Description

A forward reference has been detected in an EQU instruction. This is not allowed.

Example
Cst Sec: SECTI ON

equLab: EQU | abel 2

| abel 2: DC W$6754

Tips

Move the EQU after the definition of the label it refers to.
Example

Cst Sec: SECTI ON

| abel 2: DC. W $6754

equLab: EQU | abel 2

Exported SET label is not supported

[ERROR]

Description

The directive does not allow a reference to an external label.

Example

XDEF set Lab
const: SECTI ON
| ab: DC. B 6

setLab: SET $77AA
Tips

SET labels initialized with absolute expressions can be defined in a special file to be

included by assembly files, or the EQU directive can be used.

Example

XDEF set Lab
const: SECTI ON
| ab: DC. B 6

setLab: EQU $77AA
See also

Value too big
[DISABLED, INFORMATION, WARNING, ERROR]

Description

354

Assembler Messages

A2338:

A2340:

The absolute expression specified as initialization value for a block defined using DCB
is too big. This message is generated when the initial value specified in a DCB.B direc-
tive cannot be coded on a byte.

In this case the value used to initialize the constant block will be truncated to a byte val-
ue.

Example

const Sec: SECTI ON

| abel 1: DCB.B 2, 312

In the previous example, the constant block is initialized with the value $38 (= 312 &
$FF)

Tips

To avoid this warning, modify the initialization value to a byte value.

Example

const Sec: SECTI ON

| abel 1: DCB. B 2, 56
<FailReason>
[ERROR]

Description
The FAIL directive followed by a string has been detected in the source file.
This is the normal behavior for the FAIL directive. The FAIL directive is intended for use
with conditional assembly, to detect user defined error or warning condition
Example
LE. B: MACRO
IFC "\ 1", ""
FAIL "no data" ; error
MEXI T
ENDI F
IFC "\ 2", ""
FAIL 600 ;. war ni ng
DC.B \1
MEXI T
ENDI F
I FNC "\ 3", ""
FAIL 400 , oerror
ENDI F
DC.B \2,\1
ENDM

LE. B ; ho args

Macro parameter already defined

[ERROR]

Description

A name of a macro parameter was already defined.

Note: Not all assemblers do support named macro parameters. Assembler not support-
ing this will never issue this message.

Assembler Messages 355

A2341:

A2342:

Relocatable Section Not Allowed: an Absolute file is currently
directly generated

[ERROR]

Description

A relocatable section has been detected while the assembler tries to generate an abso-
lute file. This is not allowed.

Example
Dat aSec: SECTI ON
Dat al: DS. W1
ORG $800
entry:
NOP
NOP
addDat al: DC. W Dat al
Tips

When you are generating an absolute file, your application should be encoded in a sin-
gle source file, and should only contain absolute symbol.

So in order to avoid this message, define all your section as absolute section and re-
move all XREF directives from your source file.

Example

ORG $1000
Dat al: DS. W1

ORG $800
entry:

NOP

NOP

addDat al: DC. W Dat al

Label in an OFFSET section cannot be exported

[ERROR]

Description

An external defined label is provided as offset in an OFFSET directive or a label defined
in an offset is used in a DS directive.

Example
OFFSET 1
I D DS. B 1
ALI GN 4
COUNT: DS.W 1
ALI GN 4
VAL UE: DS.W 1
Sl ZE: EQU *
XDEF VALUE

Dat aSec: SECTI ON
Struct: DS.B SIZE
Tips
Use other labels to specify the size of the offset and the number of space to provide.
Example
OFFSET 1
I D DS. B 1
ALI GN 4

356

Assembler Messages

A2345:

A2346:

COUNT: DS.W 1

ALI GN 4
VALUE: DS.w 1
S| ZE: EQU *

Dat aSec: SECTI ON
Struct: DS.B Sl ZE

Embedded type definition not allowed
[ERROR]

Description

The keyword STRUCT or UNION has been detected within a structured type definition.
This is not allowed.

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example

myType: STRUCT
fieldl: DS. W1
field2: DS. W1
field3: DS.B 1
fieldx: STRUCT

XX: DS.B 1
yy: DS.B 1
ENDSTRUCT

fielda: DS.B 3
fields: DS. W1

ENDSTRUCT
Tips
Define the structured type as two separate structured types.
Example
typeX: STRUCT
XX: DS.B 1
yy: DS.B 1
ENDSTRUCT

myType: STRUCT
fieldl: DS. W1
field2: DS. W1
field3: DS.B 1
fieldx: TYPE typeX
field4: DS.B 3
fields: DS. W1
ENDSTRUCT

Directive or instruction not allowed in a type definition
[ERROR]

Description
An instruction or an invalid directive has been detected in a structured type definition.
Only following directives are allowed in a structured type definition:

* DS, RMB, ALIGN, EVEN, LONGEVEN,

« Conditional Assembly directives (IF, ELSE, IFCC, ..)

« Directives related to the formatting of the listing file (PLEN, SPC, ...)

Assembler Messages 357

A2350:

A2351:

A2352:

* XDEF, XREF, BASE

Note: Not all assembler backends do support structured types. Assembler not support-
ing them will not issue this message.

Example

myType: STRUCT

fieldl: DS. W1

field2: DS. W1

field3: DS.B 1
cst: DC. B $34
fields: DS.B 3
fields: DS. W1
ENDSTRUCT
Tips
Remove the invalid directive or instruction.
Example

myType: STRUCT
fieldl: DS. W1
field2: DS. w1
field3: DS.B 1
fields: DS.B 3
fields5: DS. W1
ENDSTRUCT

MEXIT is illegal (detected outside of a macro)
[ERROR]
Description
An MEXIT was found without a matching MACRO directive.
Example
MEXI T
Tips
Check for the correct writing of the MACRO directive. Do not use MEXIT as label.
Expected Comma to separate macro arguments
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Macro arguments must be separated by a comma.
Example
constants MACRO
DC. B \1+1, \2+1
ENDM

constants 1 2

Tips

Do not use spaces in macro parameters, instead use a comma:
constants 1,2

Invalid Character
[ERROR]

Description
An invalid character was found during parsing.

358

Assembler Messages

A2353:

A2354:

A2355:

A2356:

A2356:

A2380:

Tips

Check the source file for binary parts

Illegal or unsupported directive SECT
[DISABLED, INFORMATION, WARNING, ERROR
Description

The assembler did not understand the whole SECT directive. The SECT directive is
only recognized when the option Option -Compat is present.
Tips

Use the SECTION directive instead.

See also

Option -Compat

Ignoring directive '<directive>'

[DISABLED, INFORMATION, WARNING, ERROR]

Description

The assembiler is ignoring the specified directive.

This message is used mainly for directives which are not supported when the option Op-
tion -Compat is present.

See also

Option -Compat

Illegal size specification

[DISABLED, INFORMATION, WARNING, ERROR
Description

The size specification given is not legal for this directive.
Tips

Use no size specification at all or use a different one.
Illegal RAD50 character

[DISABLED, INFORMATION, WARNING, ERROR
Description

Note: Not all assemblers do support the RAD50 directive. This message is only issued
by assemblers which do support the RAD50 directive.

See also
Directive RAD50

Illegal macro argument ‘Argument’

[DISABLED, INFORMATION, WARNING, ERROR]

Description

Macro argument started with the [? syntax have to end with ?]. However this second
pattern was not found.

See also

Macro argument grouping

Macros chapter

Option -CMacAngBrack

Cutting very long line
[DISABLED, INFORMATION, WARNING, ERROR]

Description
A line was longer than the limit 1024 characters. All remaining text is ignored.

Tips

Assembler Messages 359

A2381:

A2382:

A2383:

« Split up the line into several lines.
« Remove trailing spaces and tabs.
« Use shorter identifiers.

Previous message was in this context <Context>
DISABLED, INFORMATION, WARNING, ERROR]
Description
The previous message was in a special context. Usually this message is used to show
the current macro expansion tree.
Example
TABLE: MACRO
; \1: size of table to be generated
; \2: current value for table
\@ize: EQU\1
if (\@ize >= 2)
TABLE \ @i ze/ 2,\ 2
TABLE \ @i ze-\ @i ze/ 2,\ 2+\ @i zel 2
el se
if (\@ize == 1)
DC\2
endi f
endi f
ENDM

TABLE 4
Generates the following messages:
D:\test\b.asn(9): ERROR Al1055: Error in expression
| NFORVATI ON Macr o Expansi on DC

b.asn(5): | NFORVATI ON A2381: Previ ous nessage was i n this context
"Macro | nvocation'

b.asn(5): | NFORVATI ON A2381: Previ ous nessage was i n this context
"Macro | nvocation'

b.asn(14): | NFORMATI ON A2381: Previous nessage was in this
context 'Macro Invocation'

So the error happens at line 9 (“DC \2") which was called by line 5 twice and finally by
line 14.
To fix this example, add a second parameter to the TABLE macro call:

TABLE 4,0

Tips

Check the message before the first A2381 to see the cause of the problem.
lllegal character (\0') in source file

ERROR

Description
An zero byte (a byte with ASCII code 0) was found in the source.

Tips
Check if the source file is binary.

Input line too long

360

Assembler Messages

A2400:

A2401:

ERROR
Description
An input line is longer then the translation limit.
Input lines must not be longer than 1024 characters.
Tips
Split the input line.
In recursive macros, use local SET labels to avoid lines growing with the input buffer:
Instead of:
Tabl eTo: MACRO
if (\1 >0)
DC. W\ 1
TableTo \1 - 1
endi f
ENDM
Use:
Tabl eTo: MACRO
if (\1 >0)
DC. W\ 1
\ @QoclLabel: SET \1-1
Tabl eTo \ @Q.ocLabel
endi f
ENDM

End of Line expected
[DISABLED, INFORMATION, WARNING, ERROR
Description
The assembler did not expect anything anymore on a line. This message can be gen-
erated when:
« A comment, which does not start with the start of comment character (*;"), is specified
after the instruction.
« A further operand is specified in the instruction.

Example

Dat aSec: SECTI ON
var: DS.B 1 Char vari abl e

Tips

Remove the invalid character or sequence of characters from the line.
< Insert the start of comment character at the beginning of the comment.
* Remove the superfluous operand.

Example

Dat aSec: SECTI ON
var: DS.B 1 ; Char variable

Complex relocatable expression not supported
[ERROR]
Description
A complex relocatable expression has been detected. A complex relocatable expres-
sion is detected when the expression contains:
« An operation between labels located in two different sections.
« A multiplication, division or modulo operation between two labels.

Assembler Messages 361

* The addition of two labels located in the same section.

Example

Dat aSecl: SECTI ON SHORT

Dat aLbl 1: DS.B 10

Dat aSec2: SECTI ON SHORT

Dat aLbl 2: DS. W15

of fset: EQU Dat aLbl 2 - Datalbl 1

Tips

The macro assembler does not support complex relocatable expressions. The corre-
sponding expression must be evaluated at execution time.

Example

Dat aSecl1l: SECTI ON SHORT
DatalLbl 1: DS.B 10

Dat aSec2: SECTI ON SHORT
Dat aLbl 2: DS. W 15

O fset: DS. W1

'C.X.JdeSec: SECTI ON

eval O f set:
LDD #Datalbl 2
SUBD #Datalbl 1
STD Ofset

If both Dat aSec1l and Dat aSec?2 are in the same section and defined in this module,
the assembler can compute the difference:

Dat aSecl1l: SECTI ON SHORT

DatalLbl 1: DS.B 10

Dat aLbl 2: DS. W15

of fset: EQU Dat aLbl 2 - Datalbl 1

A2402: Comma expected

[ERROR]
Description
A comma character is missing between two operands of an instruction or directive.
Example
Dat aSec: SECTI ON
Dat a: DS.B 1
Const Sec: SECTI ON
DC.B 23
Tips
The comma (‘,") character is used as separator between instruction operands.
Example
Dat aSec: SECTI ON
Dat a: DS.B 1
Const Sec: SECTI ON
DC.B 2, 3

A2500: Equal expected
[ERROR]

362

Assembler Messages

A2501:

A2502:

A2503:

Description
In a for directive, a = was expected.

Example
FOR j := $1000 TO $1003
DC. W
ENDFOR
Tips:
Just use an equal in the example (no colon).
FOR j = $1000 TO $1003
DC. W
ENDFOR
Check that the Option -Compat=b is enabled.
See also
Option -Compat
Directive FOR

TO expected
[ERROR]
Description
In a for directive, a TO was expected.
Example
FOR j := $1000 < $1003
DC. W
ENDFOR
Tips:
Just use a TO in the example.
FOR j = $1000 TO $1003
DC. W
ENDFOR
Check that the Option -Compat=b is enabled.
See also
Option -Compat
Directive FOR

ENDFOR missing
[ERROR]
Description
In a for directive, a TO was expected.
Example
FOR j := $1000 < $1003
DC. W
Tips:
Check that every FOR has a corresponding ENDFOR.
FOR j = $1000 TO $1003
DC. W
ENDFOR
Check that the Option -Compat=h is enabled.
See also
Option -Compat
Directive FOR

ENDFOR without FOR

Assembler Messages 363

A3000:

A4000:

A4001:

A4002:

[ERROR]

Description
A ENDFOR without corresponding FOR was found.
Example
; FORj := $1000 < $1003
DC. W
ENDFOR
Tips:
Check that every ENDFOR has a corresponding FOR. In the example, remove the
semicolon.
FOR j = $1000 TO $1003
DC. W
ENDFOR
Check that the is enabled.

See also

User requested stop
[DISABLE, INFORMATION, WARNING, ERROR
Description
This message is used when the user presses the stop button in the graphical user in-
terface.
Also when the assembler is closed during an assembly, this message is issued.
Tips
By moving this message to a warning or less, the stop functionality can be disabled.
Recursive definition of label <Label name>
[ERROR]
Description
The definition of an EQU label depends directly or indirectly on itself.
Example
XDEF tigger
pooh: EQU tigger - 2
tigger: EQU 2*pooh
Tips
This error usually indicates an error in some definitions. Determine the labels involved
in the recursive definition and eliminate the circular dependency.

Data directive contains no data
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A data directive is empty, and no code is generated for this directive.
Example
DC. B ;0 1,2,3,4
Tips

This warning may indicate an error, or it may be intentional within a macro expansion,
for example.

Variable access size differs from previous declaration
[DISABLE, INFORMATION, WARNING, ERROR]

Description

364

Assembler Messages

A4003:

A4004:

A4005:

A4100:

An implicit or explicit declaration of a label indicates an access size which differs from
a former declaration.

Tips

Indicating the access size of variables is particularly helpful in “header” files which con-
tain XREF directives, to be included by other files accessing these variables. If an as-
sembly file contains a “XREF.B obj”, and the header file declares “XREF.W obj”", this
warning message indicates potential problems.

Found XREF, but no XDEF for label <Label>, ignoring XREF
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The local definition of a label <Label> supersedes a global XREF declaration, if no ap-
propriate XDEF directive is given.
Example
XREF main
Code: SECTI ON
mai n: NOP ; is local, unless XDEF given
NOP
Tips
This warning may indicate a forgotten “XDEF” directive.

Qualifier ignored
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An unknown qualifier to a SECTION or ORG directive is ignored.
Example
const: SECTI ON SHORT 1234 FOO
DC. B "hello", 0
Tips
This warning may indicate a misspelled qualifier.

Access size mismatch for <Symbol>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Incompatible access sizes are attached to an object, either implicitly or explicitly. The
access size of an object is determined from XREF declarations, XDEF definitions and
(if applicable) from the access size of the section, where the object is placed into.
Example

XDEF. B two
const: SECTI ON
t wo: DC. B 2 ;inmplicit *.Wdefinition
Tips
Itis probably a good idea to eliminate mismatches, particularly if mismatches occur be-
tween declarations in a “header file” and definitions in the assembly file.

Address space clash for <Symbol>

[DISABLE, INFORMATION, WARNING, ERROR

Description

This message is only relevant for Harvard architectures (separate code and data ad-
dress spaces), and occurs for symbols whose address is used both as a code address
and a data address.

Tips

Assembler Messages 365

A12001:

A12003:

This clash may be intentional, but indicates an error in most cases.

Illegal Addressing Mode
[ERROR]

Description
An illegal addressing mode has been detected in an instruction. This message is gen-
erated when an incorrect encoding is used for an addressing mode.

Example
LDD [D X]
LDD [D, X
ANDCC $FA
Tips
Use a valid notation for the addressing mode encoding.
Example:

LDD [D, X]
ANDCC #$FA

Value is truncated to one byte
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A word operand is specified in an assembly instruction expecting a byte operand. This
warning may be generated in following cases:
«1. A symbol located in a section, which is accessible using the extended address-
ing mode, is specified as operand in an instruction expecting a direct operand.
«2. An external symbol imported using XREF is specified as operand in an instruc-
tion expecting a direct operand.
«3. The mask specified in a BCLR, BSET, BRCLR or BRSET is bigger than OxFF.

Example
XREF ext Dat a
dat aSec: SECTI ON
dat a: DS.B 1
dat a2: DS.B 1
destination: DS.W1
codeSec: SECTI ON
MOVB #data, destination
MOVB #data, destination
MOVB #ext Dat a, destination
BCLR data, #$54F
Tips
According to the reason why the warning was generated, the warning can be avoided
in the following way:
*1. Specify the force operator .B at the end of the operand or < in front of the oper-

and.
*2. User XREF.B to import the symbol.
Example:

XREF. B ext Dat a
dat aSec: SECTI ON
dat a: DS.B 1
dat a2: DS.B 1
destination: DS.W1
codeSec: SECTI ON

366

Assembler Messages

A12004:

A12005:

A12006:

A12008:

A12009:

MOVB #dat a. B, destination
MOVB #ext Data, destination
BCLR data, #$4F

Value is truncated to two bytes

[DISABLE, INFORMATION, WARNING, ERROR]

Description

If a value is larger than two bytes, but the instruction only allows a 16bit value, this mes-
sage is issued.

Value must be between 1 and 8

[ERROR]

Description

The expression specified in a pre increment, post increment, pre decrement or post
decrement addressing mode is out of the range [1..8]

Example
STX 10, SP+
Tips

According to the HC12 addressing mode notation, the increment or decrement factor
must be bigger than 0 and smaller than 9.

Value is truncated to five bits
[DISABLE, INFORMATION, WARNING, ERROR]

Description
If a value is larger than five bits, but the instruction only allows a 5bit value, this mes-
sage is generated.

Relative branch with illegal target
[ERROR]

Description
The offset specified in a PC relative addressing mode is a complex relocatable expres-
sion, a symbol defined in another section or an external defined symbol.

Example
Dat aSec: SECTI ON
Dat a: DS.B 1
CodelSec: SECTI ON
Entryl:

NOP

LDD #$6000

STD Dat a
CodeSec: SECTI ON

LDD Data

CPD #%$6000

BNE Entryl

Illegal expression
[ERROR]
Description
An illegal expression is specified in a PC relative addressing mode. The illegal expres-
sion may be generated in following cases:
*1. A complex expression is specified, when a PC relative expression is expected.
«2. Aleft or right parenthesis is missing in the expression.

Example

Assembler Messages 367

CodeSec1: SECTI ON
Entryl:

NOP
CodeSec2: SECTI ON
Entry2:

NOP

BRA Entry2 - Entryl

BRA (Entry2 + 1
Tips
Change the expression to a valid expression.
Example:

CodeSec1: SECTI ON
Entryl:

NOP
CodeSec2: SECTI ON
Entry2:

NOP

BRA Entry2

BRA (Entry2 + 1)

A12010: Register expected
[ERROR]
Description
A register mnemonic is missing in a post increment, post decrement, pre increment or
pre decrement addressing mode.

Example
LDD 1, -ssp
Tips
Specify a register mnemonic on the specified position.
Example
LDD 1, -sp
A12102: Page value expected
[ERROR]
Description
A page number is missing in a CALL instruction.
Example
Dat aSec: SECTI ON
data: DS.L 2

Far CodeSec: SECTI ON
Far Functi on:

LDD #45
STD data
CodeSec: SECTI ON

CALL Far Function
Tips
Add the missing page operand to the CALL instruction
Example:

368

Assembler Messages

A121083:

A12104:

Dat aSec: SECTI ON
data: DS.L 2
Far CodeSec: SECTI ON
Far Functi on:

LDD #45

STD data
CodeSec: SECTI ON

CALL Far Function, PAGE(FarFuncti on)

Operand not allowed

[ERROR]

Description

The operand specified in an assembly instruction is not valid for this instruction.
Example

Dat aSec: SECTI ON

data DS. B 20

CodeSec: SECTI ON

LEAX #dat a

Tips

Check your HC12 User's Guide and modify the source code in order to have only valid
instructions and addressing mode combination.

Example:

Dat aSec: SECTI ON
data DS.B 20

CodeSec: SECTI ON
LDX #dat a

Immediate value expected

[ERROR]

Description

The immediate addressing mode is expected at that position. Usually this error mes-
sage is generated when the mask specified in a BRCLR or BRSET instruction is not pre-
ceded by the immediate character (‘#).

Example
maskVal ue: EQU $40
BSCT
var: DS.B 1
CodeSec: SECTI ON
entry:
LDD #4567
BRCLR var, naskVal ue, endCode
endCode:
END
Tips

Insert the character ‘#' at the requested position to change to the immediate addressing
mode.

Example:

Assembler Messages 369

maskVal ue: EQU $40

BSCT
var: DS.B 1
CodeSec: SECTI ON
entry:
LDD #4567
BRCLR var, #nmaskVal ue, endCode
endCode:
END
A12105: Immediate Address Mode not allowed
[ERROR]
Description

The immediate addressing mode is not allowed at that position. Usually this message
is generated when the first operand specified in a BCLR, BSET, BRCLR or BRSET in-
struction is preceded by the immediate character (‘#).

Example
maskVal ue: EQU $40
BSCT
var: DS.B 1
CodeSec: SECTI ON
entry:
LDD #4567
BRCLR #var, #maskVal ue, endCode
endCode:
END
Tips
Remove the unexpected ‘#' character.
Example:
maskVal ue: EQU $40
BSCT
var: DS.B 1
CodeSec: SECTI ON
entry:
LDD #4567
BRCLR var, #maskVal ue, endCode
endCode:
END
A12107: lllegal size specification for HC12-instruction
[ERROR]
Description

A size operator follows an HC12 instruction. Size operators are coded as semicolon
character followed by single character.

Example
CodeSec: SECTI ON

ADDD. W #$0076
Tips

370

Assembler Messages

A12111:

A12202:

A12403:

Remove the size specification following the HC12 instruction.
Example:
CodeSec: SECTI ON

ADDD #$0076

Invalid Offset in TRAP instruction. valid offsets are $30 .. $39
and $40 .. $FF

[DISABLE, INFORMATION, WARNING, ERROR]

Description

An illegal offset has been specified in a TRAP instruction. The offset has to be either in
the range from 0x30 to 0x39 or in 0x40 to Oxff.

Not a hc12 instruction or directive

[ERROR]

Description

The identifier detected in an assembly line instruction part is neither an assembly direc-
tive, nor an HC12 instruction, nor a user defined macro.

Example

CodeSec: SECTI ON

LDHX #$5510
Tips
Change the identifier to a valid assembly directive, to a HC12 instruction or to the name
of a user defined macro.

Example:
CodeSec: SECTI ON

LDD #$5510

Value out of range -256..255
[ERROR]

Description
The offset between the current PC and the label specified as PC relative address is not
in the range of a signed 9-bits value (smaller than -256 or bigger than 255). A 9 bit
signed PC relative offset is expected in following instructions:
«Decrement and-branch instructions
DBEQ, DBNE
«Increment and-branch instructions
IBEQ, INE
. Test and-branch instructions
TBEQ, TBNE

Example

Dat aSec: SECTI ON
var 1: DS. W1
var 2: DS. W 10
CodeSec: SECTI ON

LDX #var2
| abel : LDD varl
CLR 1, X+

Assembler Messages 371

dummyBl : DCB. B 260, $A7
DBNE D, | abel
Tips
Replace the instruction by the following portion of code:
*For decrement and branch:

Ifcc Condition

DBNE D, | abel SUBD #1

LBNE | abel
DBNE A, | abel DECA

LBNE | abel
DBNE B, | abel DECB

LBNE | abel
DBNE X, | abel DEX

LBNE | abel
DBNE Y, | abel DEY

LBNE | abel
DBNE S, | abel DES

LBNE | abel

«For increment and branch:

Ifcc Condition

I BNE D, | abel ADDD #1

LBNE | abel
| BNE A, | abel I NCA

LBNE | abel
| BNE B, | abel | NCB

LBNE | abel
I BNE X, | abel I NX

LBNE | abel
I BNE Y, | abel I NY

LBNE | abel
IBNE S, | abel I NS

LBNE | abel

«For test and branch:

372 Assembler Messages
Ifcc Condition
TBNE D, | abel CPD #0

LBNE | abel
TBNE A, | abel TSTA
LBNE | abel
TBNE B, | abel TSTB
LBNE | abel
TBNE X, | abel CPX #0
LBNE | abel
TBNE Y, | abel CPY #0
LBNE | abel
TBNE S, | abel CPS #0
LBNE | abel
Example:
Dat aSec: SECTI ON
var 1: DS. W1
var 2: DS. W 10
CodeSec: SECTI ON
LDX #var?2
| abel : LDD varl
CLR 1, X+
dummyBl : DCB. B 260, $A7
SUBD #1
LBNE | abel
A12404: Value out of range -16..15
[ERROR]
Description
The offset used does not fit into the instruction addressing mode range between -16 and
15.
A12409: In PC relative addressing mode, references to object located in

another section or file are only allowed for IDX2 addressing

mode.
[ERROR]
Description

An reference to an external symbol or a symbol defined in another section is detected
in an 9- bits or 5-bits indexed PC relative addressing mode. This is not allowed.

Example

dat aSec: SECTI ON
dat a: DS. w1
cst Sec: SECTI ON

| abel : DC. W $33A5, $44BA

Assembler Messages 373

A12411:

codeSecl: SECTION
entry:

MOVB | abel, PCR, data
Tips
Merge the sections containing the symbol and the instruction together or change the in-
struction to an instruction supporting the 16-bit indexed PC relative addressing mode.
Example of Merging sections:

dat aSec: SECTI ON

dat a: DS. W1

codeSecl: SECTION

| abel : DC. W $33A5, $44BA
entry:

MOVB | abel, PCR, data
Example of Changing Instruction:
dat aSec: SECTI ON

dat a: DS. W1

cst Sec: SECTI ON

| abel : DC. W $33A5, $44BA
codeSecl: SECTION

entry:

LDD | abel, PCR
STD data

Restriction: label specified in a DBNE, DBEQ, IBNE, IBEQ,
TBNE or TBEQ instruction should be defined in the same sec-
tion they are used.

[ERROR]

Description

An external symbol or a symbol defined in another section has been detected in a
DBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction.

This is not allowed in a relocatable section.

Example
dat aSec: SECTI ON
dat a: DS. W1
codeSec0: SECTI ON
| abel :

NOP

NOP
codeSecl: SECTI ON
entry:

DBNE A, | abel

Tips

Merge the sections containing the symbol and the instruction together or change the in-
struction to an instruction supporting the 16-bit indexed PC relative addressing mode.

Example of Merging sections:
dat aSec: SECTI ON

dat a: DS. W1
codeSec0O: SECTI ON
| abel :

NOP

374 Assembler Messages
NOP
entry:
DBNE A, | abel
Example of Changing Instruction:
dat aSec: SECTI ON
dat a: DS. W1
codeSec0: SECTI ON
| abel :
NOP
NOP
codeSecl: SECTI ON
entry:
DECA
BNE | abel
A12412: PCRisignored for this addressing mode
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The PCR keyword is treated like a PC keyword for the Accumulator D Indirect Indexed
Addressing mode. The PCR keyword does differ from the PC register keyword only in
the way how the offset is encoded. This addressing mode has no fix offset, and there-
fore PC and PCR behave identical.
Example
LDAA [D, PCR]
A12600: Address lower than segment current position
[ERROR]
Description
A location is smaller than the last location used in the segment.
A12704: DEFSEG is missing

[ERROR]

Description
In avocet compatibility mode, a name after a SEG directive was not defined with a DEF-
SEG directive.

Example
DEFSEG MyCode CODE
DEFSEG MyDat a DATA
nop
SEG MyCodeDat a
nop
nop

Tips:

Check the spelling.
DEFSEG MyCode CCDE
DEFSEG MyDat a DATA
nop
SEG MyDat a
nop
nop

Assembler Messages 375

XREF | abel

ASR | abel

BCLR 2, | abel

BRSET 0, |abel, *

BSET O, | abel

CBEQ | abel , *

CLR | abel

COM | abel

CPHX | abel ; 1 egal for HCS08
DBNZ | abel , *

DEC | abel

I NC | abel

LDHX | abel ; | egal for HCS08
LSL | abel

LSR | abel

MOV #1, | abel

MOV | abel, | abel

NEG | abel

ROL | abel

ROR | abel

STHX | abel ; 1 egal for HCS08
TST | abel

; Exanpl e2
XREF. B | abel

ASR | abel
BCLR 2, | abel

376 Assembler Messages

NOBEEP ...t 123
-NoDebuginfo 124
ANOENV .ot 125
SOBIN L 126
PPOO 127
le bols SStruct L 128
$O o 53V 129
S} .o 53 VW 130
WENV) ... 87 WL 131
W 87 W2 132
W 87 WENFile ..ot 133
ME o 87 WmSgBX3 ...t 134
e . 87 WMSGCE ... 135
W 87 WMSCF ..ot 136
N 87 WmSgCl . 137
N 87 WmsgCU ... 138
WP 87 WmSGCW ... 139
N AR TR R IR R IR TR RRL TR 199 \wmsgFb 48, 134, 141, 143, 144, 147, 148, 149
-CESAVOCEL 9L WMSGFDIV ..o 142
G 92 WmMSGFBM .. 140
-CMacAngBrack 9B WMSIFBY 140
-CMacBragketsL 94 .\WmsgFi48, 134, 141, 144, 147, 148, 149
COMpaAL . . 95 WmsgRim ... 142
CPUHCIZ .. 9B wmsgFob ...l 143, 144, 147, 148
CPUSENIZ oeenee 9B .wmsgFoi...... 141, 143, 145, 146, 148, 149
Do 9 .wmsgFonf 141, 143, 148, 149
BNV 101 .wmsgFonp 141, 143, 144, 145, 147, 147, 148,
EnV oL 52 149, 150
P2 102 wmsgNe ...l 151, 152, 154
F20 102 wWmsgNi ..o 151, 152, 154
FAZ 102 WmsgNU ... 153
FAZ0. 102 wWmsgNw .. 151, 152, 154
PN 102 wWmegSd .o 155
He 103 wmsgSe ... 156
T 104 WmsgSi .. 157
Lo 105 . WmsgSW ... 158
Lesme .. 107 WOutFile ..o 159
L 109 wstdout ... 160
Ll L ahs 82
L8 13 g 8l
Ll 15 dbg . 83
LG o 17 hidefaults 51, 52, 69, 70, 78
SLICA L 118 INC 81
-MagroNest ... 1200 ni K7J
MD L 9 st 82
AMCUBSM e 121 o 81
ME 119,200 g T 8

378 I ndex
S 82 DEFSEG 283, 284, 284, 284, 284
S 82 ELSEIF ..., 283
K e 82 EXITM ..o 283
{Compiler} L. 53 SEG ... 284
{Project} ... 53 SUBTITLE 284
{System} ... 53 TEQ ... 284
Macro Parameters 286
Section Definition 284
A Structured Assembly 286
About Box i 46
ABSENTRY 204, 207
Absolute Expression 199, 200 B
Absolute Section................. 162, 167 BASE, 192, 204, 209
ABSPATH 42, 66, 81, 82
AddressingMod 178
Addressing Mode C
Direct ... 180 CLIST .o 205
Extended 18l CODE ... 86, 119
Immediate 179 CodeSectioncovvvuvennn.. 161
Indexed 16-bit Offset 183 CodeWarriorcoueeveeni.. 39
Indexed 5-bit Offset 182 color 135, 136, 137, 138, 139
Indexed 9-bit Offsat 183 COM o oo 39
Indexed Accumulator Offset 187 COMMENt + + v v oo 189
Indexed Indirect 16-bit Offsat 184 commentline 169
Indexed Indirect D Accumulator Offset 187 Complex Relocatable Expression 199
Indexed PC, Indexed PC Relative188 Constant
Indexed post-decrement 186 Binaryooovveiiiinn... 192, 277
Indexed post-increment 186 Decimal ... 192, 277
Indexed pre-decrement 184 Floatingpoint 192
Indexed pre-increment 185 Hexadecimal 192, 277
Inherent 179 INteger .. .ovvveieiians 191, 277
Relative......................... 181 Octal ..o 192, 277
AddressingModes 178 SUING .o 192
ALIGN 204, 208, 225, 239 Constant Section oo 161
ASMOPTIONS 57,67 COPYRIGHT 68, 74, 79
Assembler CTRL-S ..\t 42
Configuration 32 Current Directory 52, 69, 69
Error Feedback 47 CurrentCommandLine 59
InputFile 46, 81
Menu............. i 33
MenuBar ... 31 D
Messages ... 44 DataSection 162
option..............cooiinnnn B DC. 203, 212
Options SettingDialog 43 DCB .o 203, 214
Output Files 81 DebugFile..........ccovviiiinn. 82,236
StatusBar ... 3L Default DIrectory 54
ToolBar ... 30 DEFAULTENV 51, 52, 69, 70, 78
AVOC_Et) DEFAULTDIR 52, 54, 69, 81
Directive

DefaultDir ... 54

I ndex 379

DEFSEG 283, 284, 284, 284, 284 RMB 278, 278, 278, 282

Directivet 160, 177 SECTION ...t 164
ABSENTRY 204, 207 Section ..., 203, 256
ALIGN 204, 208, 225, 239 SET ..o 190, 258
BASE 192, 204, 209 SPC ... 205, 259
CLIST ... 205 TABS 205, 260
DC ... 203, 212 TITLE 205, 261
DCBcciiii i 203, 214 TTL 278, 282
DS ... 203, 216 XDEF 190, 204, 262
ELSE 206, 218 XREF 190, 191, 204, 263
ELSEC 278 XREFB 204, 264, 279
END 204, 220 DS. . 203, 216
ENDC 278
ENDFOR 204, 221
ENDIF « oo 206,222 E
ENDM 205,223,241 EditOroii 58
EQU ... 190,203,224 Editor EX€iiiiieaen 56, 58
EVEN ..., 204,225 Editor Name 56, 58
EXTERNAL 278,282 Editor OptSvviviiiiiiiaaa 56, 59
FAIL ... 204,226 EditorCommandLine 62
FOR ..., 204,229 EditorDDEClientName 62
GLOBALcovnnnt. 278,282 EditorDDEServiceName 63
IF o 206,231,233 EditorDDETOpICNAME ovoeevnes 62
IFC ..o 206,233 EditOrTypevvvvveeiiiiaiannn 62
IFDEF 206, 233 EDOUT ..o 83
IFEQ ... 206,233 ELSE ... 206, 218
IFGEt 206, 233 ELSEC 278
IFGT ... 206,233 ELSEIFcoiiieieaiaaiiaann 283
IFLE 206, 233 END 204, 220
IFLT o 206,233 ENDCcoiviiiiiiiaaaaain 278
IFNC 206, 233 ENDFOR 204, 221
IFNDEF 206, 233 ENDIF ..., 206, 222
IFNE o 206, 233 ENDM 205, 223, 241
INCLUDE 204, 235 ENVIRONMENT 70
LIST ... 205, 236 Environment
LLEN o 205, 238 ABSPATH ..., 66, 81
LONGEVEN 204, 239 ASMOPTIONS ... o, 67
Macro ... 205, 240 COPYRIGHT 68, 74, 79
MEXITt 205, 241 DEFAULTDIR........... 52,54, 69, 81
MLIST ... 205, 243 ENVIRONMENT 70
NOL ... 278, 282 ENVIRONMENT 51, 51,51
NOLIST ...l 205, 246 ERRORFILE 71, 83
NOPAGE 205, 248 File ... 51
OFFSET, 203, 249 GENPATH 73,81, 81, 235
ORG..........coivtn. 162, 203, 251 HIENVIRONMENT 70
PAGEooiiiviiininn. 205, 252 INCLUDETIME 68, 74, 79
PLENot 205, 253 OBJPATHt 75, 81
PUBLIC.................... 278, 282 TEXTPATH ... oo 77
RADS0..............ot 203, 254 TMP 78

380 I ndex
USERNAME 68, 74, 79 HOST 86
Variable 51

Environment Variable 65
ABSPATH ..ot g2 |
SRECORDcovvvnnn. 76,82 IDF ... 51,52, 52

................................... 51 JF........................ 206,231,233

Environment Variables 42 VEC o 206, 233

EQU ... 190,203,224 IFDEFcciiiiiiiiiinn 206, 233

ErrorFile 83 (1= = I 206, 233

ErrorListing 83 IEGE ..., 206, 233

ERRORFILE 71, 83 = 206, 233

EVEN 204, 225 \FLE, 206, 233

EXITM oo 283 IFLT oo 206, 233

Explorer ... 52 IFNC ... 206, 233

Expression ... 199 IFNDEF, 206, 233
Absolute 199, 200 IENE . o 206, 233
Complex Relocatable 199 INCLUDE 204, 235
Simple Relocatable 199,201 IncludeFileS . ..ovvee e 81

EXTERNAL 278, 282 INCLUDETIME 68, 74, 79

External Symbol 190 Instruction ..., 170

Integer Constant 191, 277

F

FAIL oot 204,226 L

File Label ... o 169
Debug ... 82,236 LANGUAGEcccoiun... 86
Environment 51 LIBPATH ..., 42
Error ... 83 LineContinuation 64
Include 81 LIST .o, 205, 236
Listing................ 81,82,205,236 ListingFile 81, 82, 205, 236
MotorolaS 82 LLEN ... 205, 238
Object ...l 8l LONGEVEN 204, 239
PRM 163, 165, 166 LOW o oo 191
SOUMCE . . vttt 81

FileManager 52

Floating-Point Constant 192 M

FOR ..o 204,229 Macro ... 178, 205, 240

MacCros. ... 265

G MCUTOOLS|INI 53

MCUTOOLSINI 35, 69

GENPATH 42,73,81, 81, 235 MESSAGE 86

GLOBAL ...t 278, 282 M essage

Group ... 54 DISABLED 319

GUI Graphic User Interface 27 ERROR . ..o, 319

FATAL 319
WARNING 319, 319

H Message Settingst 44

HIENVIRONMENT 70 MEXIT ... 205, 241

HIGH 191 MLIST ... 205, 243

I ndex 381
MotorolaSFile 82 P
PAGEo, 191, 205, 252
N Path . o oo 54
NOL oo 218.282 g e e
NOLIST © ot 205, 246) '
NOPAGE on oag PRMFile .. 163, 165, 166
""""""""""" ! projectini58
PUBLIC .o 278, 282
@)
Object File ..o 81 R
OBIPATH oo, 42,75, 75, 81
OFFSET ..o 203, 249 RADSO ...« D 203,254
0 d 178 RecentCommandLine.................. 59
Ogggtnor ----------------------- \op o7g Relocatable Section 164, 167
Addition 102,100 202 ReLVEASYMBOl .oovnvi e 191
Arithmetic Bi 0o RGB ... 135, 136, 137, 138, 139
Birt'\fvir;ea'c T “oq RMB............ 278, 278, 278, 282
Bitwise(unary) 195
BitwistAND ..o 19 S
Bitwise ExclusveOR 199
BItWiSEORooovoeen 199 SWEADDEANCEe A
BitwWize 278 SaveEdltor. 55
DIVISON © v 193,198,202 SVEONEXIt ..o A4
Force ... 108 SaveOptionsc.ovviii 55
HIGH oo 101,196 SECTION........oovvviiinnnnnnsn, 164
LOGICA .« v oo 195 Sectionl 161, 203, 256
LOW oo 101 197 Absolute 162, 167
ModUO vt 193, 198, 202 gOdg L igi
Multiplication 193, 198, 202 DO” AL 16
PAGE . .\ 191, 197 BB L
Precedence 108 Relocatable 164, 167
Relational 195, 199 §$ -------------------------- 150, ggg
Shift .o 194,199,202,278 7 o7
SigN oo 193, 198, 201 ShowTip.C.)f.D.z;t}./ """"""""""" o1
Optiunbtractl O 192,199, 201 Simple Relocatable Expression 199, 201
CODE 86. 119 SourceFile i 81
HOST ’ 86 sourceline, 169
LANGUAGE\ g FC...... SSRRRREEERERR R PRy 205,259
MESSAGE . o 86 Specid Modifiers 87
OUTPUT .. i gg SRECORD ..o 76
VARIOUS ..o 86 ?;?L',Eg """"""""""""""" ég
OPUONS .o 5461 SausoarEnabled ..o 60
ORG ..o 162, 203, 251 !
OUTPUT .. oo 86 StringConstant 192
SUBTITLE .« .o oo 284
Symbol 190
External 190

Reserved 191

I ndex

382

Undefined 191

UserDefined 190
T
TABS 205, 260
TEQ o 284
TEXTPATH ... 2,77
TipoftheDay 27
TipFlePosccoiiiii 61
TITLE ... 205, 261
TMP 78
ToolbarEnabled 60
TTL oo 278, 282
U
Undefined Symbol 191
UNIX . 52
User Defined Symbol 190
USERNAME 68, 74, 79
\/
Variable

Environment 51
VARIOUS ... 86
W
WindowFont, 61
WindowPos 60
Windowscoiiiiii... 52
WinEdit 52,72,72
X
XDEF ...l 190, 204, 262
XREF 190, 191, 204, 263

XREFB 204, 264, 279

	Table Of Contents
	Assembler
	Highlights
	Structure of this Document

	Using the Assembler
	Assembler Environment
	Project Directory
	Editor

	Writing your Assembly Source File
	Assembling your Source File
	Linking Your Application
	Directly Generating an ABS File
	Assembler source file
	Assembling and generating the application

	Assembler Graphical User Interface
	Starting the Assembler
	Assembler Main Window
	Window Title
	Content Area
	Tool Bar
	Status Bar
	Assembler Menu Bar
	File Menu
	Assembler Menu
	View Menu

	Editor Settings Dialog Box
	Global Editor (Shared by all Tools and Projects)
	Local Editor (Shared by all Tools)
	Editor started with Command Line
	Editor started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration Dialog Box
	Environment Configuration Dialog

	Option Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class associated with a Message

	About Box
	Specifying the Input File
	Use the Command Line in the Tool Bar to Assemble
	Assembling a New File
	Assembling a file which has already been assembled

	Use the Entry File | Assemble...
	Use Drag and Drop

	Message/Error Feedback
	Use Information from the Assembler Window
	Use a User Defined Editor
	Line Number Can be Specified on the Command Line
	Line Number Cannot be Specified on The Command Line

	Environment
	The Current Directory
	Environment Macros
	Global Initialization File (MCUTOOLS.INI) (PC only)
	[Installation] Section
	[Options] Section
	[XXX_Assembler] Section
	[Editor] Section
	Example

	Local Configuration File (usually project.ini)
	[Editor] Section
	[XXX_Assembler] Section
	Example

	Paths
	Line Continuation
	Environment Variable Details
	ABSPATH: Absolute file Path
	ASMOPTIONS: Default Assembler Options
	COPYRIGHT: Copyright Entry in Object File
	DEFAULTDIR: Default Current Directory
	ENVIRONMENT: Environment File Specification
	ERRORFILE: Error File Name Specification
	GENPATH: Search Path for Input File
	INCLUDETIME: Creation Time in Object File
	OBJPATH: Object File Path
	SRECORD: S Record Type
	TEXTPATH: Text File Path
	TMP: Temporary directory
	USERNAME: User Name in Object File

	Files
	Input Files
	Source Files
	Include File

	Output Files
	Object Files
	Absolute Files
	Motorola S Files
	Listing Files
	Debug Listing Files
	Error Listing File
	Interactive Mode (Assembler window open)
	Batch Mode (Assembler window not open)

	Assembler Options
	Assembler Option Details
	Using Special Modifiers

	List of all Options
	-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON
	-Ci: Switch Case Sensitivity on Label Names OFF
	-CMacAngBrack: Angle brackets for Macro Arguments Grouping
	-CMacBrackets: Square brackets for Macro Arguments Grouping
	-Compat: Compatibility Modes
	-CPU: Derivative
	-D: Define Label
	-Env: Set Environment Variable
	-F: Output File Format
	-H: Short Help
	-I: Include File Path
	-L: Generate a Listing File
	-Lasmc: Configure Listing File
	-Lc: No Macro Call in Listing File
	-Ld: No Macro Definition in Listing File
	-Le: No Macro Expansion in Listing File
	-Li: No included File in Listing File
	-Lic: License Information
	-LicA: License Information about every Feature in Directory
	-M: Memory Model
	-MacroNest: Configure Maximum Macro Nesting
	-MCUasm: Switch Compatibility with MCUasm ON
	-N: Display Notify Box
	-NoBeep: No Beep in Case of an Error
	-NoDebugInfo: No Debug Information for ELF/ Dwarf Files
	-NoEnv: Do not use Environment
	-ObjN: Object File Name Specification
	-Prod: Specify Project File at Startup
	-Struct: Support for Structured Types
	-V: Prints the Assembler Version
	-View: Application Standard Occurrence
	-W1: No Information Messages
	-W2: No Information and Warning Messages
	-WErrFile: Create "err.log" Error File
	-Wmsg8x3: Cut File Names in Microsoft Format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb: Set Message File Format for Batch Mode
	-WmsgFi: Set Message File Format for Interactive Mode
	-WmsgFob: Message Format for Batch Mode
	-WmsgFoi: Message Format for Interactive Mode
	-WmsgFonf: Message Format for no File Information
	-WmsgFonp: Message Format for no Position Information
	-WmsgNe: Number of Error Messages
	-WmsgNi: Number of Information Messages
	-WmsgNu: Disable User Messages
	-WmsgNw: Number of Warning Messages
	-WmsgSd: Setting a Message to Disable
	-WmsgSe: Setting a Message to Error
	-WmsgSi: Setting a Message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create Error Listing File
	-WStdout: Write to Standard Output
	Directive

	Sections
	Section Attribute
	Code Sections
	Constant Sections
	Data Sections

	Section Type
	Absolute Sections
	Example
	Example

	Relocatable Sections
	Example
	Example: Defining one RAM and one ROM Area.
	Example: Defining multiple RAM and ROM Areas.

	Relocatable vs. Absolute Section
	Modularity
	Multiple Developers
	Early Development
	Enhanced Portability
	Tracking Overlaps
	Reusability

	Assembler Syntax
	Comment Line
	Source Line
	Label Field
	Operation Field
	Instruction
	Directive
	Macro Name

	Operand Field: Addressing Modes
	Inherent
	Immediate
	Direct
	Extended
	Relative
	Indexed, 5-bit offset
	Indexed, 9-bit offset
	Indexed, 16-bit offset
	Indexed, Indirect 16-bit offset
	Indexed, pre-decrement
	Indexed, pre-increment
	Indexed, post-decrement
	Indexed, post-increment
	Indexed, Accumulator offset
	Indexed-Indirect, D Accumulator offset
	Indexed PC vs. Indexed PC Relative Addressing Mode

	Comment Field

	Symbols
	User Defined Symbols
	External Symbols
	Undefined Symbols
	Reserved Symbols

	Constants
	Integer Constants
	String Constants
	Floating-Point Constants

	Operators
	Addition and Subtraction Operators (binary)
	Syntax
	Description
	Example

	Multiplication, Division and Modulo Operators (binary)
	Syntax
	Description
	Example

	Sign Operators (unary)
	Syntax
	Description
	Example

	Shift Operators (binary)
	Syntax
	Description
	Example

	Bitwise Operators (binary)
	Syntax
	Description
	Example

	Bitwise Operators (unary)
	Syntax
	Description
	Example

	Logical Operators (unary)
	Syntax
	Description
	Example

	Relational Operators (binary)
	Syntax
	Description
	Example

	HIGH Operator
	Syntax
	Description
	Example:

	LOW Operator
	Syntax
	Description
	Example:

	PAGE Operator
	Syntax
	Description
	Example:

	Force Operator (unary)
	Syntax
	Description
	Example:

	Operator Precedence

	Expression
	Absolute Expression
	Simple Relocatable Expression
	Unary Operation Result
	Binary Operations Result

	Translation Limits

	Assembler Directives
	Directive Overview
	Section Definition Directives
	Constant Definition Directives
	Data Allocation Directives
	Symbol Linkage Directives
	Assembly Control Directives
	Listing File Control Directives

	ABSENTRY - Application Entry Point
	Syntax:
	Synonym:
	Description
	Example

	ALIGN - Align Location Counter
	Syntax:
	Synonym:
	Description
	Example

	BASE - Set Number Base
	Syntax:
	Synonym:
	Description
	Example

	CLIST - List Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	DC - Define Constant
	Syntax:
	Synonym:
	Description
	Example for DC.B:
	Example for DC.W:
	Example for DC.L:
	See also

	DCB - Define Constant Block
	Syntax:
	Description
	Example
	See also

	DS - Define Space
	Syntax:
	Synonym:
	Description
	Example
	See also

	ELSE - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	END - End Assembly
	Syntax:
	Synonym:
	Description
	Example

	ENDFOR - End of FOR block
	Syntax:
	Synonym:
	Description
	Example
	See also

	ENDIF - End Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	ENDM - End Macro Definition
	Syntax:
	Synonym:
	Description
	Example

	EQU - Equate Symbol Value
	Syntax:
	Synonym:
	Description
	Example

	EVEN - Force Word Alignment
	Syntax:
	Synonym:
	Description
	Example

	FAIL - Generate Error Message
	Syntax:
	Synonym:
	Description
	Example:

	FOR - Repeat assembly block
	Syntax:
	Synonym:
	Description
	Example:
	See also

	IF - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	IFcc - Conditional Assembly
	Syntax:
	Synonym:
	Description
	Example

	INCLUDE - Include Text from Another File
	Syntax:
	Synonym:
	Description
	Example

	LIST - Enable Listing
	Syntax
	Synonym:
	Description
	Example:
	See Also

	LLEN - Set Line Length
	Syntax:
	Synonym:
	Description
	Example:

	LONGEVEN - Forcing Long-Word Alignment
	Syntax:
	Synonym:
	Description
	Example

	MACRO - Begin Macro Definition
	Syntax:
	Synonym:
	Description
	Example

	MEXIT - Terminate Macro Expansion
	Syntax:
	Synonym:
	Description
	Example

	MLIST - List Macro Expansions
	Syntax:
	Description
	Synonym:
	Example

	NOLIST - Disable Listing
	Syntax:
	Synonym:
	Description
	Example
	See Also

	NOPAGE - Disable Paging
	Syntax:
	Synonym:
	Description

	OFFSET - Create Absolute Symbols
	Syntax:
	Synonym:
	Description
	Example:
	Example:

	ORG - Set Location Counter
	Syntax:
	Synonym:
	Description
	Example
	See also

	PAGE - Insert Page Break
	Syntax:
	Synonym:
	Description
	Example

	PLEN - Set Page Length
	Syntax:
	Synonym:
	Description

	RAD50 - Rad50 encoded string constants
	Syntax:
	Synonym:
	Description
	Example:

	SECTION - Declare Relocatable Section
	Syntax:
	Synonym:
	Description
	Example
	Example:
	See also

	SET - Set Symbol Value
	Syntax:
	Synonym:
	Description
	Example

	SPC - Insert Blank Lines
	Syntax:
	Synonym:
	Description

	TABS - Set Tab Length
	Syntax:
	Synonym:
	Description

	TITLE - Provide Listing Title
	Syntax:
	Synonym:
	Description

	XDEF - External Symbol Definition
	Syntax:
	Synonym:
	Description
	Example

	XREF - External Symbol Reference
	Syntax:
	Synonym:
	Description
	Example

	XREFB - External Reference for Symbols located on the Direct Page
	Syntax:
	Synonym:
	Description:
	Example:

	Macros
	Macro Overview
	Defining a Macro
	Calling Macros
	Macro Parameters
	Example
	Macro Argument Grouping
	Example

	Labels Inside Macros
	Example

	Macro Expansion
	Nested Macros

	Assembler Listing File
	Page Header
	Example

	Source Listing
	Abs.
	Example

	Rel.
	Example

	Loc
	Example

	Obj. Code
	Example

	Source Line
	Example

	MASM Compatibility
	Comment Line
	Constants
	Integer Constants

	Operators
	Directives

	MCUasm Compatibility
	Labels
	Example

	SET Directive
	Example

	Obsolete Directives

	Semi-Avocet Compatibility
	Directives
	Section Definition
	Example:
	Example:
	Example:

	Macro Parameters
	Support for Structured Assembly
	Switch Block
	Example:

	FOR Block
	Example:

	Mix C and Assembler Applications
	Memory Models
	Parameter Passing Scheme
	Return Value
	Accessing Assembly Variables in an ANSI C Source File
	Example of Data and Constant Definition:
	Example of Data and Constant Declaration:
	Example of Data and Constant Reference:

	Accessing ANSI C Variables in an Assembly Source File
	Example of Data and Constant Definition:
	Example of Data and Constant Declaration:
	Example of Data and Constant Reference:

	Invoking an Assembly Function in an ANSI C Source File
	Example of assembler file: mixasm.asm
	Example of C file:
	Example of linker parameter file: mixasm.prm

	Support for Structured Types
	Structured Type Definition
	Type allowed for Structured Type Fields
	Variable Definition
	Variable Declaration
	Accessing Structured Variable
	Accessing a Field Address
	Accessing a Field Offset

	Structured Type: Limitations

	Make Applications
	Assembler Applications
	Generating directly an Absolute File

	Mixed C and assembler Applications
	Memory Maps and Segmentation

	How To ...
	How To Work with Absolute Sections
	Defining Absolute Sections in the Assembly Source File
	Example

	Linking an Application containing Absolute Sections

	How To Work with Relocatable Sections
	Defining Relocatable Sections in the Source File
	Example

	Linking an Application containing Relocatable Sections

	How To Initialize the Vector Table
	Initializing the Vector Table in the Linker PRM File
	Example:
	Example:

	Initializing the Vector Table in the Source File using a Relo catable Section
	Example:
	Example:

	Initializing the Vector Table in the Source File using an Abso lute Section
	Example:
	The linker PRM file looks as follows:

	Splitting an Application into different Modules
	Example of Assembly File (Test1.asm):
	Corresponding Include File(Test1.inc):
	Example of Assembly File(Test2.asm):
	Example of PRM File(Test2.prm):

	Using Direct Addressing mode to access Symbols
	Using Direct Addressing mode to Access External Symbols
	Example:

	Using Direct Addressing mode to Access Exported Symbols
	Example:

	Defining Symbols in the Direct Page
	Example:

	Using Force Operator
	Example:

	Using SHORT Sections
	Example:

	Assembler Messages
	A1: Unknown message occurred
	A2: Message overflow, skipping <kind> messages
	A50: Input file ‘<file>’ not found
	A51: Cannot open statistic log file <file>
	A52: Error in command line <cmd>
	A64: Line Continuation occurred in <FileName>
	A65: Environment macro expansion error '<description>' for <vari ablename>
	A66: Search path <Name> does not exist
	A1000: Conditional directive not closed
	A1001: Conditional else not allowed here
	A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH block
	A1003: CASE or DEFAULT is missing
	A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest)
	A1051: Zero Division in expression
	A1052: Right parenthesis expected
	A1053: Left parenthesis expected
	A1054: References on non-absolute objects are not allowed when op tions -FA1 or -FA2 are enabled
	A1055: Error in expression
	A1056: Error at end of expression
	A1057: Cutting constant because of overflow
	A1058: Illegal floating point operation
	A1059: != is taken as EQUAL
	A1060: Implicit comment start
	A1061: Floating Point format is not supported for this case
	A1062: Floating Point number expected
	A1101: Illegal label: label is reserved
	A1103: Illegal redefinition of label
	A1104: Undeclared user defined symbol: <symbolName>
	A1201: Label <labelName> referenced in directive ABSENTRY. Only la bels defined in a code segment are allowed in the ABSENTRY directive
	A1251: Cannot open object file: Object file name too long
	A1252: The exported label <name> is using an ELF extension
	A1253: Limitation: code size > <SizeLimit> bytes
	A1301: Structured type redefinition: <TypeName>
	A1302: Type <TypeName> is previously defined as label
	A1303: No type defined
	A1304: Field <FieldName> is not declared in specified type
	A1305: Type name expected
	A1401: Value out of range -128..127
	A1402: Value out of range -32768..32767
	A1405: PAGE with initialized RAM not supported
	A1406: HIGH with initialized RAM not supported
	A1407: LOW with initialized RAM not supported
	A1408: Out of memory, Code size too large
	A1410: EQU or SET labels are not allowed in a PC Relative addressing mode.
	A1411: PC Relative addressing mode is not supported to constants
	A1412: Relocatable object <Symbol> not allowed if generating absolute file
	A1413: Value out of relative range
	A1414: Cannot set fixup to constant
	A1415: Cutting fixup overflow
	A1416: Absolute section starting at <Address> size <Size> overlaps with absolute section starting at <Address>
	A1417: Value out of possible range
	A1502: Reserved identifiers are not allowed as instruction or directive
	A1503: Error in option -D: <Description>
	A1601: Label must be terminated with a ":"
	A1602: Invalid character at end of label (<LabelName>): semicolon or space expected
	A1603: Directive, instruction or macro name expected: <SymbolName> detected
	A1604: Invalid character detected at the beginning of the line: <Charac ter>
	A1605: Invalid label name: <LabelName>
	A2301: Label is missing
	A2302: Macro name is missing
	A2303: ENDM is illegal
	A2304: Macro definition within definition
	A2305: Illegal redefinition of instruction or directive name
	A2306: Macro not closed at end of source
	A2307: Macro redefinition
	A2308: File name expected
	A2309: File not found
	A2310: Size specification expected
	A2311: Symbol name expected
	A2312: String expected
	A2313: Nesting of include files exceeds 50
	A2314: Expression must be absolute
	A2316: Section name required
	A2317: Illegal redefinition of section name
	A2318: Section not declared
	A2319: No section link to this label
	A2320: Value too small
	A2321: Value too big
	A2323: Label is ignored
	A2324: Illegal Base (2,8,10,16)
	A2325: Comma or Line end expected
	A2326: Label <Name> is redefined
	A2327: ON or OFF expected
	A2328: Value is truncated
	A2329: FAIL found
	A2330: String is not allowed
	A2332: FAIL found
	A2333: Forward reference not allowed
	A2335: Exported SET label is not supported
	A2336: Value too big
	A2338: <FailReason>
	A2340: Macro parameter already defined
	A2341: Relocatable Section Not Allowed: an Absolute file is currently directly generated
	A2342: Label in an OFFSET section cannot be exported
	A2345: Embedded type definition not allowed
	A2346: Directive or instruction not allowed in a type definition
	A2350: MEXIT is illegal (detected outside of a macro)
	A2351: Expected Comma to separate macro arguments
	A2352: Invalid Character
	A2353: Illegal or unsupported directive SECT
	A2354: Ignoring directive '<directive>'
	A2355: Illegal size specification
	A2356: Illegal RAD50 character
	A2356: Illegal macro argument 'Argument'
	A2380: Cutting very long line
	A2381: Previous message was in this context <Context>
	A2382: Illegal character ('\0') in source file
	A2383: Input line too long
	A2400: End of Line expected
	A2401: Complex relocatable expression not supported
	A2402: Comma expected
	A2500: Equal expected
	A2501: TO expected
	A2502: ENDFOR missing
	A2503: ENDFOR without FOR
	A3000: User requested stop
	A4000: Recursive definition of label <Label name>
	A4001: Data directive contains no data
	A4002: Variable access size differs from previous declaration
	A4003: Found XREF, but no XDEF for label <Label>, ignoring XREF
	A4004: Qualifier ignored
	A4005: Access size mismatch for <Symbol>
	A4100: Address space clash for <Symbol>
	A12001: Illegal Addressing Mode
	A12003: Value is truncated to one byte
	A12004: Value is truncated to two bytes
	A12005: Value must be between 1 and 8
	A12006: Value is truncated to five bits
	A12008: Relative branch with illegal target
	A12009: Illegal expression
	A12010: Register expected
	A12102: Page value expected
	A12103: Operand not allowed
	A12104: Immediate value expected
	A12105: Immediate Address Mode not allowed
	A12107: Illegal size specification for HC12-instruction
	A12111: Invalid Offset in TRAP instruction. valid offsets are $30 .. $39 and $40 .. $FF
	A12202: Not a hc12 instruction or directive
	A12403: Value out of range -256..255
	A12404: Value out of range -16..15
	A12409: In PC relative addressing mode, references to object located in another section or file are only allowed for IDX2 addressing mode.
	A12411: Restriction: label specified in a DBNE, DBEQ, IBNE, IBEQ, TBNE or TBEQ instruction should be defined in the same sec tion they are used.
	A12412: PCR is ignored for this addressing mode
	A12600: Address lower than segment current position
	A12704: DEFSEG is missing

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

