QA e I R~ I
aby unsigned add RegY+RegB

adca B-bit add with carry to Regl
adcb 8-bit add with carry to RegB
adda 8-bit add to ReghA

addb 8-bit add to RegB

addd 16-bit add to RegD

anda 8-bit logical and to RegA

andb B8-bit logical and to RegB
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD

asr 8-bit arith right shift Memory
asra 8-bit arith right shift

asrb B-bit arith right shift to RegB

bce branch if carry clear

beclr clear bits in memory

becs branch if carry set

beqg branch if result is zero (Z=1)
bge branch if signed 2

bgt branch if signed >

bhi branch if unsigned >

bhs branch if unsigned =

bita 8-bit and with RegA, sets CCR
bitb B-bit and with RegB, sets CCR
ble branch if signed s

blo branch if unsigned <

bls branch if unsigned £

blt branch if signed <

bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always

breclr branch if bits are clear,

brn branch never

brset branch if bits are set
bset set bits in memory

bsr branch to subroutine

bvec branch if overflow clear

bvs branch if overflow set

cba B-bit compare RegA with RegB
clec clear carry bit, C=0

cli clear I=0, enable interrupts
oy B-bit Memory clear

clra RegA clear

clrb RegB clear

clv clear overflow bit, V=0

cmpa B8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to Regd
comb 8-bit logical complement to RegB

cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare Reg¥ with memory
daa 8-bit decimal adjust accumulator
dec 8-bit decrement memory

deca 8-bit decrement Regh
decb 8-bit decrement RegB

des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY

eora 8-bit logical exclusive or to Regh
eorb 8-bit logical exclusive or to RegB
fdiv 16-bit unsigned fractional divide
idiv 16-bit unsigned divide

inc 8-bit increment memory

inca 8-bit increment Regh

inx
iny
jmp
jsr
ldaa
ldab
ldd
lds
ldx
1dy
lsr
lsra
lsrb
lsrd
mul
neg
nega
negb
oraa
orab
psha
pshb
pshx
pshy
pula
pulb
pulx
puly
rol
rola
rolb
ror
rora
rorb
rti
rts
sbha
sbca
sbch
sec
sei
sev
staa
stab
std
sts
stx
sty
suba
subb
subd
swWi
tab
tap
tba
tpa
trap
tst
tsta
tstb
tsx
tsy
txs
tys
wai
xgdx
xgdy

16-bit increment RegX

16-bit increment Reg¥

jump always

jump to subroutine

8-bit load memory into Regh
8-bit load memory into RegB
16-bit load memory into RegD
16-bit load memory into RegSP
16-bit load memory into RegX
16-bit load memory into RegY¥
8-bit logical right shift memory
8-bit logical right shift Rega
8-bit logical right shift RegB
16-bit logical right shift RegD
RegD=RegA*RegB

8-bit 2's complement negate memory
8-bit 2's complement negate Regh
8-bit 2's complement negate RegB
8-bit logical or to Regh

8-bit logical or to RegB

push B8-bit RegA onto stack

push B-bit RegB onto stack

push 16-bit RegX onto stack
push 16-bit Reg¥ onto stack

pop 8 bits off stack into Rega
pop 8 bits off stack into RegB
pop 16 bits off stack into RegX
pop 16 bits off stack into Reg¥
8-bit roll shift left Memory
8-bit roll shift left Regi
8-bit roll shift left RegB
8-bit roll shift right Memory
8-bit roll shift right RegA
8-bit roll shift right RegB
return from interrupt

return from subroutine

8-bit subtract RegA-RegB

8-bit sub with carry from Regad
8-bit sub with carry from RegB
set carry bit, C=1

set I=1, disable interrupts

set overflow bit, V=1

8-bit store memory from RegA
8-bit store memory from RegB
16-bit store memory from RegD
16-bit store memory from SP
16-bit store memory from RegX
16-bit store memory from Reg¥
8-bit sub from Reghi

8-bit sub from RegB

16-bit sub from RegD

software interrupt, trap
transfer A to B

transfer A to CC

transfer B to A

transfer CC to A

illegal op code, or software trap
8-bit compare memory with zero
8-bit compare RegA with zero
8-bit compare RegBE with zero
transfer S+1 to X

transfer S+1 to Y

transfer X-1 to 8

transfer Y-1 to S

wait for interrupt

exchange RegD with RegX
exchange RegD with RegyY

Motorola 6811 assembly instructions




andcc g-bit logical and to RegCC lbne long branch if result is nonzero
bgnd enter background debug mode lbpl long branch if result is positiwve
call subroutine in expanded memory lbra long branch always
dbeq decrement and branch if result=0 lbrn long branch never
dbne decrement and branch if result0 lbve long branch if overflow clear
ediv Reg¥=(Y:D) /RegX, unsigned divide lbvs long branch if overflow set
edivs Reg¥=(Y:D) /RegX, signed divide leas 16-bit load effective addr to SP
emacs 16 by 16 signed mult, 32-bit add leax 16-bit load effective addr to X
emaxd 16-bit unsigned maximum in RegD leay 16-bit load effective addr to Y
emaxm 16-bit unsigned maximum in memory maxa 8-bit unsigned maximum in Regh
| emind 16-bit unsigned minimum in RegD maxim 8-bit unsigned maximum in memory
| eminm 16-bit unsigned minimum in memory . mem determine the membership grade
RegY:D=Reg¥*RegD unsigned mult mina 8-bit unsigned minimum in RegA
RegY:D=Reg¥Y*RegD signed mult minm 8-bit unsigned minimum in memory
16-bit look up and interpolation movb 8-bit move memory to memory
exchange register contents movw 16-bit move memory to memory
increment and branch if result=0 orcc 8-bit logical or to RegCC
increment and branch if result#0 pshc push B-bit RegCC onto stack
16-bit by 16-bit signed divide pshd push 16-bit RegD onto stack
long branch if carry clear pulc pop 8 bits off stack into RegCC
long branch if carry set puld pop 16 bits off stack into RegD
long branch if result is zero rev Fuzzy logic rule evaluation
long branch if signed 2 revw welghted Fuzzy rule evaluation
long branch if signed = rto

return sub in expanded memory
long branch if unsigned > sex sign extend 8-bit to 16-bit reg

long branch if unsigned 2 theg test and branch if result=0
long branch if signed £ tbl 8-bit look up and interpolation
long branch if unsigned < tbne test and branch if result#0
long branch if unsigned = tfr transfer register to register
long branch if signed < trap illegal instruction interrupt
long branch if result is negative wav weighted Fuzzy logic average

6812 assembly instructions (in addition to the 6811)

addressing mode Effective Address

immediate EA is 8-bit address (0 to 255)
direct EA is 8-bit address (0 to 255)
extended EA is a 16-bit address

8-bit index Ea=r+m (0 to 255)

addressing mode Effective Address

5-bit index EA=r+m (-16 to 15)
pre-increment r=r+v, EA=r (1 to 8)
pre-decrement r=r-v, EA=r (1 to 8)
post-increment EA=r, r=r+v (1 to 8)
post-decrement EA=r, r=r-v (1 to 8)

Reg A offset EA=r+A, zero padded

Reg B offset EA=r+B, zero padded

Reg D offset EA=r+D

9-bit index EA=r+qg (-256 to 255) 3
16-bit index EA=r+W (-32768 to 65535)
D indirect EA={r+D}

indirect EA={r+W} (-32768 to 65535)

ing modes (in addition to the 6811)



