
"""""" -~~ . u_.-""'"

aby unsigned add RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
asl/lsl 8-bit left shift Memory
asIa/Isla 8-bit left shift RegA
as1b/lslb 8-bit arith left shift RegB
asld/1s1d 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=l)
bge branch if signed ~
bgt branch if signed>
bhi branch if unsigned>
bhs branch if unsigned ~
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ~
blo branch if unsigned <
bls branch if unsigned ~
bIt branch if signed <
bmi branch if result is
bne branch if result is

bpI branch if result is
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
cba 8-bit compare RegA with RegB
clc clear carry bit, c=o
cli clear 1=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, v=o
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
eora 8-bit logical exclusive or
eorb 8-bit logical exclusive or
fdiv 16-bit unsigned fractional
idiv 16-bit unsigned divide
inc 8-bit increment memory
inca 8-bit increment RegA

negative (N=l)

nonzero (z=O)

positive (N=O)

Motorola 6811 assembly instructions

to RegA
to RegB
divide

inx
iny
jmp
jsr
Idaa
Idab
Idd
Ids
Idx
Idy
Isr
Isra
lsrb
Isrd
mul
neg
nega
negb
oraa
orab
psha
pshb
pshx
pshy
pula
pulb
pulx
puly
rol
rola
rolb
ror
rora
rorb
rti
rts
sba
sbca
sbcb
sec
sei
sev
staa
stab
std
sts
stx
sty
suba
subb
subd
swi
tab
tap
tba
tpa
trap
tst
tsta
tstb
tsx
tsy
txs
tys
wai
xgdx
xgdy

16-bit increment RegX
16-bit increment RegY
jump always
jump to subroutine
8-bit load memory into RegA
8-bit load memory into RegB
16-bit load memory into RegD
16-bit load memory into RegSP
16-bit load memory into RegX
16-bit load memory into RegY
8-bit logical right shift memory
8-bit logical right shift RegA
8-bit logical right shift RegB
16-bit logical right shift RegD
RegD=RegA*RegB
8-bit 2's complement negate
8-bit 2's complement negate
8-bit 2's complement negate
8-bit logical or to RegA
8-bit logical or to RegB
push 8-bit RegA onto stack
push 8-bit RegB onto stack
push 16-bit RegX onto stack
push 16-bit RegY onto stack
pop 8 bits off stack into RegA
pop 8 bits off stack into RegB
pop 16 bits off stack into RegX
pop 16 bits off stack into RegY
8-bit roll shift left Memory
8-bit roll shift left RegA
8-bit roll shift left RegB
8-bit roll shift right Memory
8-bit roll shift right RegA
8-bit roll shift right RegB
return from interrupt
return from subroutine
8-bit subtract RegA-RegB
8-bit sub with carry from RegA
8-bit sub with carry from RegB
set carry bit, C=l
set 1=1, disable interrupts
set overflow bit, V=l
8-bit store memory from RegA
8-bit store memory from RegB
16-bit store memory from RegD
16-bit store memory from SP
16-bit store memory from RegX
16-bit store memory from RegY
8-bit sub from RegA
8-bit sub from RegB
16-bit sub from RegD
software interrupt, trap
transfer A to B
transfer A to CC
transfer B to A
transfer CC to A

illegal op code, or software trap
8-bit compare memory with zero
8-bit compare RegA with zero
8-bit compare RegB with zero
transfer S+l to X
transfer 8+1 to Y
transfer X-1 to S
transfer Y-1 to S

wait for interrupt
exchange RegD with RegX
exchange RegD with RegY

memory
RegA
RegB

-



andcc

bgnd
call
dbeq
dbne
ediv
edivs
emacs

emaxd
emaxm
emind

eminm
emu1
emuls
etbl

exg
ibeq
ibne
idivs
Ibcc
Ibcs

Ibeq
Ibge
Ibgt
Ibhi
Ibhs
Ible
Iblo
IbIs
Iblt
Ibmi

8-bit logical and to RegCC

enter background debug mode

subroutine in expanded memory

decrement and branch if result=O

decrement and branch if result~O

RegY=(Y:D)/RegX, unsigned divide

RegY=(Y:D)/RegX, signed divide

16 by 16 signed mult, 32-bit add

16-bit unsigned maximum in RegD

16-bit unsigned maximum in memory

16-bit unsigned minimum in RegD

16-bit unsigned minimum in memory

RegY:D=RegY*RegD unsigned mu1t

RegY:D=RegY*RegD signed mult

16-bit look up and interpolation

exchange register contents

increment and branch if result=O

increment and branch if result~O

16-bit by 16-bit signed divide

long branch if carry clear

long branch if carry set

long branch if result is zero

long branch if signed ~

long branch if signed>

long branch if unsigned>

long branch if unsigned ~

long branch if signed $

long branch if unsigned <

long branch if unsigned $

long branch if signed <

long branch if result is negative

Ibne

Ibpl
Ibra
Ibrn
Ibvc
Ibvs

leas
leax

leay
maxa
maxm
mem
mina
minm
movb
movw
orcc

pshc
pshd
pulc
puld
rev
revw
rtc
sex

tbeq
tbl

tbne
tfr

trap
wav

Motorola6812 assemblyinstructions(inadditionto the 6811)

long branch if result is nonzero

long branch if result is positive

long branch always

long branch never

long branch if overflow clear

long branch if overflow set
16-bit load effective addr to SP

16-bit load effective addr to X

16-bit load effective addr to Y

8-bit unsigned maximum in RegA

8-bit unsigned maximum in memory

determine the membership grade

8-bit unsigned minimum in RegA

8-bit unsigned minimum in memory

8-bit move memory to memory

16-bit move memory to memory

8-bit logical or to RegCC

push 8-bit RegCC onto stack

push 16-bit RegD onto stack

pop 8 bits off stack into RegCC

pop 16 bits off stack into RegD

Fuzzy logic rule evaluation

weighted Fuzzy rule evaluation

return sub in expanded memory

sign extend 8-bit to 16-bit reg
test and branch if result=O

8-bit look up and interpolation
test and branch if result~O

transfer register to register

illegal instruction interrupt

weighted Fuzzy logic average

I,.

.1

'I

I
'I

II
II

II

il
I
,I'

!I

II
II

I

example
Idaa #u
Idaa u
Idaa U

Idaa m,r

addressing

immediate

direct

extended

8-bit index

Effective Address

EA is 8-bit address (0

EA is 8-bit address (0

EA is a 16-bit address

EA=r+m (0 to 255)

to 255)
to 255)

mode

Motorola6811 addressingmodes

Motorola 6812 addressingmodes (in addition to the 6811)

example addressing mode Effective Address
Idaa m,r 5-bit index EA=r+m (-16 to 15)
Idaa V,+r pre-increment r=r+v, EA=r (1 to 8)
Idaa V,-r pre-decrement r=r-v, EA=r (1 to 8)
Idaa v,r+ post-increment EA=r, r=r+v (1 to 8)
Idaa v,r- post-decrement EA=r, r=r-v (1 to 8)
Idaa A,r Reg A offset EA=r+A, zero padded
Idaa B,r Reg B offset EA=r+B, zero padded
Idaa D,r Reg D offset EA=r+D
Idaa q,r 9-bit index EA=r+q (-256 to 255)
Idaa W,r 16-bit index EA=r+W (-32768 to 65535)
Idaa [D,r] D indirect EA={r+D}
Idaa [W,r] indirect EA={r+W} (-32768 to 65535)


