
MIGRATING TO THE 68HC12 IN C

by Jean-Pierre Lavandier (Cosmic Software)
and Greg Viot (Motorola)

INTRODUCTION

An important design goal of the 68HC12 was to maintain software compatibility with the 68HC11
allowing a smooth upward migration from the 68HC11 to the 68HC12. The compatibility goal was
achieved by keeping the same programmers model (see figure 1) and the same functional
definition of all 68HC11 instructions.

Also, since many microcontroller programmers are moving from assembly to C to improve
productivity and maintainability, the 68HC12 designers strengthened the 68HC11 instruction set
and addressing modes to better support high level languages. In this paper, we discuss many of
the features added to the 68HC12 which allow for efficient C code. We also provide code
examples of both microcontrollers for comparison.

FIGURE 1. Identical Programmer’s Model for 68HC11 & 68HC12

A B 077 0

015 D

015 IX

015 IY

015 SP

015 PC

CONDITION CODE REGISTERS X H I N Z V C

PROGRAM COUNTER PC

STACK POINTER SP

INDEX REGISTER Y

INDEX REGISTER X

ACCUMULATOR D

ACCUMULATORS A & B, or

THE C LANGUAGE

The C language basically handles three kinds of objects:

- Static Variables
- Dynamic Variables
- Functions

The terms `static & dynamic' are used here instead of 'global & local'. A variable which is statically
allocated has a known address, but is not always global because its scope may be restricted to a
function or a file by the C keyword 'static'. Such a variable becomes local, although not
dynamically allocated. A dynamically allocated variable is created during the program execution
and has an undefined address until it is allocated. Figure 2 shows the memory organization of a C
program, including a text (program) area, static data area, and a heap and stack for dynamic
variables.

FIGURE 2. Memory Organization of a C Program

Text Data Heap Stack

Heap starts
here

Stack starts
here

Text : The text area stores the executable instructions, and is usually
considered read-only. The size of the text area is fixed at compile time.

Data : The data (static) area contains the C static variables, both local and
global. This data area is further divided into two sub-sections, initialized and
unitialized.

Heap : The heap area provides a mechanism for allocating temporary blocks
of memory during run-time. A block of memory may be any size.

Stack : The stack is used to hold the return address and pass parameters
during a (run-time) function call. Also, the stack is used to hold the functions
local variables.

A function is a piece of code starting with a label, and ending with a return instruction, such as rts.
Such a function will be entered by a jsr instruction. Operations on a function are restricted to
taking its address and calling it with arguments. The address of a function becomes a pointer to
that function. A function can be called either directly, using its name, or through a pointer to a
function, using the following operations:

ldx #func ; take address
jsr func ; direct call
jsr 0,x ; indirect call

Note that the 68HC12 allows all function calls to become relative by using the PC relative
addressing mode:

jsr func,pcr ; relative call

This method allows Position Independent Code (PIC), which can be moved anywhere in memory
to be executed. PIC is more useful for RAM-based systems than ROM-based, which is the case
for most embedded applications. This is also a useful feature when implementing flash
programming routines, which need to be executed from any RAM space. Such routines may be
written with the main application, and simply copied in RAM before being executed.

Static variables are allocated once at a known address in the memory space, and generally
accessed through a label. On the other hand, dynamic variables are allocated during the program
execution, generally at a function entry, and are destroyed (deallocated) when they are no longer
needed (at a function exit). Dynamic variables are allocated on the stack, allowing recursivity as
required by the C standard. Basic operations on memory variables can be narrowed to:

- take a variable address
- load a variable in a register
- store a register into a variable

Direct operations on memory variables are generally available, avoiding the Load/Operate/Store
sequence. For static variables, basic operations can be implemented using the following
instructions:

ldx #svar ; load an address
ldd svar ; load a variable
std svar ; store a variable

For dynamic variables, we need a way to address an object in the stack. For reference, a stack
frame is shown in Figure 3. The 68HC11 cannot address directly an object on the stack, it is then
necessary to copy the stack pointer into an index register X or Y, and then access the variable:

tsx ; load stack address
ldd 2,x ; load and
std 4,x ; store a variable

Computing the address of such a variable still needs more instructions:

tsx ; load stack address
xgdx ; in the D register
addd #4 ; add offset

FIGURE 3. Sample Stack Frame in C

unused

local
variables

Stack
Pointer

Frame
Pointer

return
address

arg1

arg2

arg3

result = Function (arg1, arg2, arg3, . . .) ;

Stack
Frame

...

The need to reload the stack pointer into an index register before any dynamic object access may
extend the code size for large functions. Even if redundant loads can be removed by an optimizer,
it may be more useful to load the stack address once into a dedicated index register at the
function entry. This eases the memory accesses, but complicates an address calculation, as the
previous sequence destroys the index register. This problem may be solved by adding in the
stack a word containing the stack address, which can be easily computed at the function entry. It
costs time and code at function entry, but simplifies the function body and exit.

On the other hand, the 68HC12 makes these accesses easy and efficient as the stack is directly
addressable:

ldd 2,sp ; load and
std 4,sp ; store a variable

and a stack address is easily computed by a single instruction:

leax 4,sp ; load effective address

The stack frame allocation is needed to create space on the stack the space needed to host the
dynamic variables, and to initialize a 'frame pointer' allowing a direct access to this area. For the
68HC11, the stack allocation can be implemented by the following sequence:

tsx ; get stack pointer
xgdx ; in the D register
subd #size ; move backward
xgdx ; and store back
txs ; in the stack pointer

The same sequence will be used at the function end to deallocate the stack frame, by adding its
size to the stack pointer. The 68HC12 'load effective address' will solve the problem, as only one
instruction is needed to open and close the stack frame:

leas -size,sp ; open stack frame

Not using a dedicated frame pointer is more practical on the 68HC12 because the stack is directly
addressable. Not using a frame pointer saves a word on the stack, as using a dedicated register
for a frame pointer forces the compiler to save and restore it at each function entry and exit. This
also leaves both index registers available for code generation. With this method, variables on the
stack, including arguments, will be accessed with positive offsets from the stack pointer, thus
loosing half of the efficient encoding possibilities of the indexed addressing mode, allowing offsets
between -16 and +15 to be coded on one post-byte. Entry and exit sequences consist only of
‘leas’ instructions to open and close the stack frame.

A second choice is to use a frame pointer. It has to be saved on function entry and the current
frame pointer has to be computed. It will have to be restored at the function exit. Entry and exit
sequences may look like:

entry:
pshx ; save old FP
tfr sp,x ; set new FP
leas -size,sp ; open stack frame
...

exit:
 leas size,sp ; clean-up stack frame
 pulx ; restore old FP
 rts ; return to caller

Functions with small stack frames can take advantage of the 68HC12 auto-increment/decrement
addressing modes:

entry:
stx size+2,-sp ; open frame and save old FP
leax size+2,sp ; set new FP
...

exit:
ldx size+2,sp+ ; clean stack and restore FP
rts ; return to caller

For auto-inc/decrement modes, the maximum value for the offset being 8, this method can be
used for stack frames up to 6 bytes, the +2 offset representing the FP size. The frame pointer is
set between arguments and dynamic variables, so both positive and negative offsets can be used
efficiently to access stack.

The C language basically handles four kinds of variables:

- integers
- reals
- pointers (and arrays)
- structures (and unions)

Integers may be 8-bit, 16-bit or 32-bit. As bit size becomes larger, it becomes more difficult to
handle integers efficiently. The registers available in both processors are D, X and Y. Register D
is a 16-bit register, dividable in A and B, two 8-bit registers, and supporting arithmetic and logic
operations, either directly or through two 8-bit operations.

FIGURE 4. Summary of Addressing Modes for 68HC12

Addressing Mode

Inherent

Immediate

Direct

Extended

Relative

Indexed
5-bit offset

Indexed
pre-decrement

Indexed
pre-increment

Indexed
post-decrement

Indexed
post-increment

Indexed
accumulator offset

Indexed
9-bit offset

Indexed
16-bit offset

Indexed-indirect
16-bit offset

Indexed-indirect
D accum. offset

Source Format

INST

INST #opri8/16

INST opr8a

INST opr16a

INST rel8/16

INST oprx5,xysp

INST oprx3,-xys

INST oprx3,+xys

INST oprx3,xys-

INST oprx3,xys+

INST abd,xysp

INST oprx9,xysp

INST oprx16,xysp

INST [oprx16,xysp]

INST [D,xysp]

Abbreviation Description

INH

IMM

DIR

EXT

REL

IDX

IDX

IDX

IDX

IDX

IDX

IDX1

IDX2

[IDX2]

[D,IDX]

Operands (if any) are in CPU registers

Operand is included in instruction stream, 8 or 16-bits

Postbyte is lower 8-bits of address $0000-$00FF

Postbytes form 16-bit address

8 or 16-bit relative offset from PC

5-bit signed offset from X, Y, SP or PC

Auto pre-decrement X, Y or SP by 1 through 8

Auto pre-increment X, Y or SP by 1 through 8

Auto post-decrement X, Y or SP by 1 through 8

Auto post-increment X, Y or SP by 1 through 8

Accumulator offset A, B, or D from X, Y, SP or PC

9-bit signed offset from X, Y, SP or PC

16-bit offset from X, Y, SP or PC

16-bit offset from X, Y, SP or PC, with indirection

Accumulator D offset from X, Y, SP or PC with indirection

Registers X and Y are basically 16-bit pointers, and support a restricted subset of arithmetic
operations only. These registers can be used as indexes to access memory. In the 68HC11, X
and Y are not completely equivalent, as using Y cost in most of the cases an extra code byte, and
an extra cycle. There only one indexed addressing mode using an unsigned byte offset, allowing a
direct access to the 256 bytes from the value of the index register.

The only direct arithmetic operations available are increment and decrement. All other arithmetic
and logic operations still can be used with the exchange instructions with the D register, but
needing two extra instructions to perform the operation.

In the 68HC12, X an Y are completely equivalent, and can be used in several indexed addressing
modes (see figure 4 for addressing modes).

The 'lea' (load effective address) instruction allows all addition operations with constants of any
value, and with any value loaded in the D register. Subtraction from constant is directly possible,
while subtraction from the D register need it to be negated, costing extra instructions. Other
arithmetic and logic operations are still possible using the exchange instruction with the D register.

With the 68HC11, the implementation of a 32-bit integer depends on the use or not of a frame
pointer. If no frame pointer is used, a 32-bit integer can be implemented in the register pair D and
X, thus leaving the Y register for any memory indirection. If a frame pointer is used, it is
dangerous to use the other index register with D to host the 32-bit value as this leaves no
available pointer if a memory indirection is need, for instance to store the 32-bit result in memory
through a pointer. In this case, a 32-bit value will be completely hold in memory, or a word in
memory and a word in the D register. If these extra words are statically allocated, they become
part of the processor context, and need to be saved when an interrupt occurs. Allocating these
words on the stack will consume more stack space as they extend the stack frame of any function
using 32-bit expressions, but there will be no need to save them on an interrupt.
With the 68HC12, there is no need for a frame pointer, so a 32-bit value can be held in the register
pair D and X, thus leaving Y available for a memory indirection.

32-bit operations will be implemented either with inline code if the instruction set allows a code
efficient production, or with a function call to a library routine performing the operation. These
routines will operate on a first operand located in the D and X register pair, and a second operand
pointed by the Y register.

Real numbers supported in C are 32-bit (float) or 64-bit large (double). 32-bit reals will be
implemented as 32-bit integers, but 64 bit reals will always be handled directly in memory. All
arithmetic operations on reals are implemented with library calls. 32-bit values can use the same
argument convention as for the 32-bit integers. 64-bit values will be handled by library routines
receiving both operand addresses in the two index registers X and Y.

Pointers will obviously be implemented in index registers X and Y, as they are the only ones
allowing memory indirection. This does not stop the compiler to still use D when no memory
indirection is required, for a pointer assignment for instance. The 68HC12 addressing modes offer
efficient possibilities for a wide range of situations:

Array Indexing:

i = tab[j]; ldx j ; load index
ldd tab,x ; load array element
std i ; store result

This construct can be used with the 68HC11 only if the array is located in the first 256 bytes (zero
page). Otherwise, the following code is needed:

ldd j ; load index
addd #tab ; add array address
xgdx ; result in X
ldd 0,x ; load array element
std i ; store result

Pointer Indexing:

i = p[j]; ldx p ; load pointer
ldd j ; load index
ldd d,x ; load array element
std i ; store result

This addressing mode is not available with the 68HC11, and the following code is needed:

ldd j ; load index
addd p ; add pointer
xgdx ; result in X
ldd 0,x ; load array element
std i ; store result

Auto-Increment:

i = *p++; ldx p ; load pointer
ldd 2,x+ ; load value and increment X
stx p ; store back pointer
std i ; store result

This addressing mode is not available with the 68HC11 and here is one possible solution:

ldx p ; load pointer

ldd 0,x ; load value
inx ; increment
inx ; register
stx p ; store back pointer
std i ; store result

The 68HC12 offers indexed-indirect addressing modes making easy the usage of a pointer when
it is allocated on the stack, for instance:

i = *p; ldd [2,sp] ; load value directly
std i ; store result

The 68HC11 needs the following sequence:

tsx ; get stack address
ldx 2,x ; load pointer
ldd 0,x ; load value
std i ; store result

The form allows efficient access to an array of pointers with an index:

i = *ptab[i]; ldx #ptab ; load array address
ldd i ; load index
lsld ; align to word offset
ldd [d,x] ; load value directly
std i ; store result

The 68HC11 needs the following sequence:

ldd i ; load index
lsld ; align to word offset
addd #ptab ; add array address
xgdx ; result in X
ldx 0,x ; load pointer
ldd 0,x ; load value
std i ; store result

All the above examples for the 68HC11 use the X register. If the Y register was used, the actual
code would be still larger as instructions handling the Y register need one extra byte (and cycle).

Structures can only be copied into another structure variable, or copied onto the stack to be
passed as argument This block move may be implemented differently depending on the structure
size. The 68HC12 offer efficient 'move' instructions which can be used for that purpose, along with

the loop instructions. Assuming that source and destination addresses are loaded respectively in
the index registers X and Y, a structure copy may be implemented by the following sequence:

ldd #size ; structure size
loop:

movb 1,x+,1,y+ ; copy one byte and increment regs
dbne d,loop ; count down and loop back

It is possible to enhance this copy by using a move word:

ldd #size/2 ; structure size as word count
loop:

movw 2,x+,2,y+ ; copy one word and increment regs
dbne d,loop ; count down and loop back

(movb 0,x,0,y ; copy last byte if size is odd)

The last move byte is needed only if the structure size is odd.

Stacking a structure can be implemented in a similar way, assuming that the source address in
loaded in the X register (even size):

leax size,x ; move to the end
ldd #size/2 ; structure size as word count

loop:
movw 2,-x,2,-sp ; stack one word and decrement regs
dbne d,loop ; count down and loop back

Those sequences can be implemented in such a way only because the 'move' instructions does
not need the D register. It is not possible to use the same method with the 68HC11, or only if the
structure size is smaller than 256 bytes (usually enough):

ldaa #size ; structure size
loop:

ldab 0,x ; load one byte
stab 0,y ; store it
inx ; increment source pointer
iny ; increment destination pointer
deca ; count down
bne loop ; and loop back

This sequence cannot be optimized using word moves as all the processor registers are already
used.

Stacking the structure with a 68HC11 can be implemented with the following sequence:

ldab #size ; structure size
abx ; move to the end

loop:

dex ; decrement source pointer
ldaa 0,x ; load one byte
psha ; push it
decb ; count down
bne loop ; and loop back

with no possible word optimization.

EXPRESSIONS

In most of the cases, a C expression is turned into a sequence of loads into registers, operations
on registers and stores into memory. The compiler often has to enlarge a result, to match the C
rules for expression evaluation, mainly from char to int. This operation named 'widening' depends
on the char type. An unsigned char will be simply widened by adding a zero as Most Significant
Byte (MSB). A signed char will be widened by a sign extend operation, which add either a $00 or
a $FF as MSB. An instruction is provided with the 68HC12 to ease this process, assuming a byte
has been loaded in the B register:

tfr b,d ; clear the A register for an unsigned extension
sex b,d ; sign extend B into A for a signed extension

If the first operation can be simply replaced by a simple clra, the second operation is more difficult
to implement with a 68HC11:

clra ; clear A first
tstb ; test byte
bpl pos ; skip if positive
coma ; turns A to $FF otherwise

pos:

Note that the ANSI standard leaves the compiler free to choose the default type of a 'char'
variable; it is selected as 'unsigned char' by default as there is no efficient sign extend instruction.

In complex expressions, intermediate results need to be stored, either in memory, or in another
register, depending on the type of the operation. For instance, such an expression:

a = (b & c) | (d & e); /* all char's */

cannot be translated without saving an intermediate result. The 68HC12 addressing modes allow
such an operation to be done efficiently:

ldab b ; load first operand
andb c ; operates with second operand
pshb ; save first result on the stack
ldab d ; load third operand
andb e ; operates with fourth operand
orab 1,sp+ ; last operation and stack off
stab a ; store result

The post-incremented indexed addressing mode allows the operation to be performed, and the
stack to be cleaned at the same time. If the same operation has to be implemented with the
68HC11, the sequence becomes:

ldab b ; load first operand
andb c ; operates with second operand

pshb ; save first result on the stack
ldab d ; load third operand
andb e ; operates with fourth operand
tsx ; load stack address
orab 0,x ; last operation
ins ; clean-up stack
stab a ; store result

Those costless temporary cells can be used for inlining multiplications by specific constants, such
as the following sequence multiplying the D register by 3:

pshd ; copy value on the stack
lsld ; left shift = multiply by 2
addd 2,s+ ; add value = multiply by 3, and clean-up stack

Except the fact that all the arithmetic and logic instructions accept the new indexed addressing
modes, there are no big changes in the basic operations. The 68HC12 provides more efficient
register transfer operations than the 68HC11, where transfers between the index registers X or Y
and the D register were only possible with exchange instructions. The main enhancements are
with the multiply and divide operations.

 The 68HC12 provides four multiply instructions:

 mul ; unsigned 8 x 8 -> 16, same as 68HC11's
 emul ; unsigned 16 x 16 -> 32
 emuls ; signed 16 x 16 -> 32
 emacs ; signed 16 x 16 -> 32 with addition in memory

The emul instruction can be used to implement the 16-bit multiplication as usually used in C,
assuming all variables are 'int':

a = b * c; ldd b ; load first operand
ldy c ; load second operand
emul ; operate
std a ; store result

The emul instruction always provides a 32-bit result in registers D and Y, but in this example, the
lower 16-bit word of the result (in the D register) only is stored back. The high word (in register Y)
is simply discarded. Note that the unsigned multiply instruction is used even if operands are
signed because the result is truncated to the lower 16 bits of the product, and because emul cost
one byte only, instead of two for emuls.

Note also that this instruction is very fast as it costs only 3 cycles. It means that the usual
optimizations replacing multiplications with special constants (power of two, small values) by
faster sequences (left shifts, push/add) may not be necessary. Using the 'emul' instruction may be
as fast, or even faster than the equivalent sequence, but it will need the Y register, thus assuming
that it is not used for something else.

To get a full 32-bit result, the C syntax has to be used carefully, because writing the expression:

la = b * c; /* long = int * int */

will get a 16-bit result from the product of b and c, will sign extend it to a long before to store the
32-bit result, as required by the C evaluation rules. The proper syntax is:

la = (long) b * c; ldd b ; load first operand
ldy c ; load second operand
emuls ; operates
std a+2 ; store result LSW
sty a ; store result MSW

The explicit conversion applied to one operand (either b or c) forces the compiler to produce a 32-
bit result for the multiplication, allowing it to use efficiently the emuls instruction.

The emul or emuls instructions can be used to provide a 32-bit result only if operands (b and c)
are both signed or both unsigned.

The last multiplication instruction allows a 32-bit result to be accumulated in memory. To allow the
compiler to use directly this instruction, the C syntax must be:

la += (long) b * c; ldx #b ; load first operand address
ldy #c ; load second operand address
emacs la ; operates

The 68HC12 provides five divide instructions:

idiv ; unsigned 16 : 16, same as 68HC11
fdiv ; fractional unsigned 16 : 16, same as 68HC11
idivs ; signed 16 : 16
ediv ; unsigned 32 : 16
edivs ; signed 32 : 16

The two first instructions are directly accessed by the C expressions:

a = b / c; ldd b ; load first operand
ldx c ; load second operand
idivs ; operates
stx a ; store result (quotient)

The idiv instruction is used when operands are unsigned. The two last divisions can be used only
with the appropriate C syntax:

a = (int)(la / b); ldd la+2 ; load first operand LSW
ldy la ; load first operand MSW
ldx b ; load second operand
edivs ; operates

 sty a ; store result (quotient)

The explicit conversion is necessary to force the compiler to get a 16-bit result from the division,
thus allowing it to use the edivs instruction. Otherwise, the division provides a 32-bit result, as
one of its operands is a 32-bit value, and the result is truncated by the assignment. As for the
multiplications, the ediv and edivs can be used only if operands are both signed or both
unsigned.

The 68HC12 also provides specific instructions for computing the min or max of two unsigned
values, on 8 or 16 bits. There is no special C operators for such operations, so the best solution is

to support these instructions with predefined C functions allowing the compiler to use directly
these instructions. These instructions work only with indexed addressing mode, so they are
directly operational for dynamic variables, so assuming that variables a, b, and c are allocated on
the stack:

a = max(b, c); ldd 2,sp ; load first operand
emaxd 4,sp ; maximize with second operand
std 6,sp ; store result

or when used for accumulation in memory:

a = max(a, b); ldd 2,sp ; load first operand
emaxm 4,sp ; maximize second operand in memory

STATEMENTS

A C program flow is driven by if-else statements, loop statements (while, do, for), and switch
statements.

The 68HC12 provides relative conditional branches with 16-bit offsets, allowing the whole memory
to be reached. It provides also a set of special branches:

tbeq test and branch if equal to zero
tbne test and branch if not equal to zero
ibeq increment and branch if equal to zero
ibne increment and branch if not equal to zero
dbeq decrement and branch if equal to zero
dbne decrement and branch if not equal to zero

These instructions operate on a register which may be A, B, D, X, Y or SP. They can be used to
implement loops, but also compare and branch sequences for specific compare values:

if (a == 1) ldd a ; load value
... dbne d,endif ; decrement and

... ; branch if zero
endif:

The value returned by a function can be tested against zero with the following sequence:

if (func() != 0) jsr func ; result in D
tbeq d,endif ; branch if D is zero

Using these instructions directly in C loops is interesting when the counter variable is in a register.
If it is a memory variable, its usage is less easy as the result need to be written back in memory.
This can be achieved by duplicating the store instruction on top of the loop body, and after the
branch.

These instructions will be very useful in built-in loops, such as those needed for structure copies,
or shift operations:

a = b << c; ldd b ; load value
ldx c ; load count
beq nosh ; skip if count is zero

loop:

lsld ; shift value
dbne x,loop ; count down and loop back

nosh:

The switch statement is also a C instruction which can be efficiently implemented with the
68HC12 instructions. Small lists of consecutive values can be implemented using the decrement
and branch instructions:

switch (i) ldd i ; load value
{ tbeq d,case_0 ; branch here if D is zero

case 0: dbne d,case_1 ; branch here if D was on
... dbne d,case_2 ; branch here if D was two

case 1: ...
...

case 2:
 ...

Each entry costs 3 bytes, but it turns to be not time efficient as the list becomes longer. For longer
contiguous lists, another solution is to use the PC relative indexed indirect addressing mode:

switch (i) ldd i ; load value
{ cpd #case_last ; compare with last case

case 0: cpd #case_last ; compare with last case
... bgt case_default ; skip to default

case 1: lsld ; align to word offset
... jmp [d,pc] ; jump to the right code

 case 2:
... dc.w case_0 ; table of addresses

case 3: dc.w case_1 ; for all the
... dc.w case_2 ; case labels
 dc.w case_3

...

Each entry costs 2 bytes, with a fixed initial cost for the range check, the shift and the jump
instructions. The execution time is also independent from the amount of cases. Non-contiguous
cases are easy to handle with the first method, by subtracting the difference with the previous
case, and with the second method, by adding dummy entries to fill the holes from the missing
cases, which may enlarge the address table size beyond a reasonable limit. If the first case is not
zero, the result is biased and checked before to enter the dispatch sequence.

FUNCTIONS

The 68HC12 allows two kinds of function calls. The first one is the same as the 68HC11, using the
pair jsr/rts, working with 2-byte addresses, allowing a direct access to 64K of code. The second
kind uses the pair call/rtc, working with 3-byte addresses, allowing a direct access to the full
extended code memory, also called bank switching. A 16K window in the 64K addressing space is
mapped to the expected bank by setting the specific register PPAGE in the I/O space. Figure 5
illustrates banks extending addressing beyond 64K.

Calling a bank switched function needs the processor to update the PPAGE register with a new
value, while saving the previous value for the return. These two operations being merged into one
single instruction, the compiler is able to call directly (or thru a pointer) a banked switched
function. Otherwise, the compiler has to use a small piece of code located in a non-switched area
of the application to perform all saving and switching operations. The call instruction pushes 3
bytes, 2 bytes for the 16-bit return address, and one byte for the current content of the PPAGE
register, and jumps to the target location after loading the PPAGE register with the new value. The
rtc instruction will restore both the PPAGE and the PC registers from the values on the stack.

Such a mechanism is simple and efficient, but implies a few constraints. A bank has a limited size,
and a switched function cannot cross a bank boundary, thus limiting the size of a bank switched
function to 16K. This is large enough for one function, but when packing several functions in one
bank, there will be a hole at the end. A good linker will help the functions allocation by ordering the
functions in order to have the smallest holes as possible.

FIGURE 5. Extending Beyond 64K through Bank Switching
25

6 1
6K

 p
ag

es

$0000

$4000

$8000

$C000

$FFFF

$BFFF

$7FFF

$3FFF

16
K

16
K

16
K

16
K

0
1

3
2

4
5

6
7

8
9

FD

FE
FF

FC

Addressing memory within the range $8000-$BFFF causes
a special 8-bit PPAGE register to select 1 of 256 pages, depending
on the value in the PPAGE register

The range $8000-$BFFF is a window into expanded memory

64
K

If variables are allocated in ROM with the code (const variables for example) they will be
accessed thru the same decoding mechanism as the code itself, so using the value of the PPAGE
register. This means that such a variable cannot be accessed from another bank, where the
PPAGE register have a different value. We can consider these variables as 'static' variables
whose scope is limited to a bank.

A switched function has to be called using a call instruction. It then has to be exited using a rtc
instruction. If such a function has to be called from the same bank, its exit sequence forces the
compiler to still call it with a call instruction, even if a jsr would have been enough. This means
that a function has only one way to be called. This does not stop a function which is called only
from the same bank to be called directly by a jsr instruction if such an efficiency is actually
needed. It may become difficult to declare properly all these functions if the application size

grows, and it has been growing if the bank switching mechanism was needed. The extra cost of
defaulting all functions to be banked may be small enough to allow the application to still be kept
efficient.

CONCLUSION

By extending the 68HC11 addressing modes and instruction set, the 68HC12 processor allows a
C compiler to produce a tighter code. Combined with a fast instruction execution, C code is
smaller and much faster. The bank switching mechanism allows applications to grow beyond the
64K limits with a small extra cost.

	MIGRATING TO THE 68HC12 IN C
	INTRODUCTION
	FIGURE 1. Identical Programmer’s Model for 68HC11 & 68HC12
	THE C LANGUAGE
	
	FIGURE 2. Memory Organization of a C Program

	FIGURE 4. Summary of Addressing Modes for 68HC12

	EXPRESSIONS
	STATEMENTS
	FUNCTIONS
	FIGURE 5. Extending Beyond 64K through Bank Switching
	CONCLUSION

