
1

Transport Layer 3-1

Chapter 3
Transport Layer

Computer Networking:
A Top Down Approach
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)

If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3: Transport Layer
Our goals:

understand principles
behind transport
layer services:

multiplexing/demultipl
exing
reliable data transfer
flow control
congestion control

learn about transport
layer protocols in the
Internet:

UDP: connectionless
transport
TCP: connection-oriented
transport
TCP congestion control

Transport Layer 3-3

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-4

Transport services and protocols
provide logical communication
between app processes
running on different hosts
transport protocols run in
end systems

send side: breaks app
messages into segments,
passes to network layer
rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

Transport Layer 3-5

Transport vs. network layer

network layer: logical
communication
between hosts
transport layer: logical
communication
between processes

relies on, enhances,
network layer services

Household analogy:
12 kids sending letters to

12 kids
processes = kids
app messages = letters
in envelopes
hosts = houses
transport protocol =
Ann and Bill who demux
to in-house siblings
network-layer protocol
= postal service

Transport Layer 3-6

Internet transport-layer protocols

reliable, in-order
delivery (TCP)

congestion control
flow control
connection setup

unreliable, unordered
delivery: UDP

no-frills extension of
“best-effort” IP

services not available:
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

logical end-end transport

2

Transport Layer 3-7

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-8

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-9

How demultiplexing works
host receives IP
datagrams

each datagram has source
IP address, destination IP
address
each datagram carries 1
transport-layer segment
each segment has source,
destination port number

host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

recall: create sockets with
host-local port numbers:

DatagramSocket mySocket1 = new
DatagramSocket(12534);

DatagramSocket mySocket2 = new
DatagramSocket(12535);

recall: when creating
datagram to send into UDP
socket, must specify

(dest IP address, dest port number)

when host receives UDP
segment:

checks destination port
number in segment
directs UDP segment to
socket with that port
number

IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-11

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-12

Connection-oriented demux

TCP socket identified
by 4-tuple:

source IP address
source port number
dest IP address
dest port number

recv host uses all four
values to direct
segment to appropriate
socket

server host may support
many simultaneous TCP
sockets:

each socket identified by
its own 4-tuple

web servers have
different sockets for
each connecting client

non-persistent HTTP will
have different socket for
each request

3

Transport Layer 3-13

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-14

Connection-oriented demux:
Threaded Web Server

client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-15

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport
protocol
“best effort” service, UDP
segments may be:

lost
delivered out of order
to app

connectionless:
no handshaking between
UDP sender, receiver
each UDP segment
handled independently
of others

Why is there a UDP?
no connection
establishment (which can
add delay)
simple: no connection state
at sender, receiver
small segment header
no congestion control: UDP
can blast away as fast as
desired
Voice?

Transport Layer 3-17

UDP: more

often used for
streaming multimedia
apps

loss tolerant
rate sensitive

other UDP uses
DNS
SNMP

reliable transfer over
UDP: add reliability at
application layer

application-specific
error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-18

UDP checksum

Sender:
treat segment contents
as sequence of 16-bit
integers
checksum: addition (1’s
complement sum) of
segment contents
sender puts checksum
value into UDP checksum
field

Receiver:
compute checksum of
received segment
check if computed checksum
equals checksum field value:

NO - error detected
YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

4

Transport Layer 3-19

Internet Checksum Example
Note: when adding numbers, a carryout from
the most significant bit needs to be added
to the result
Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Transport Layer 3-20

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-21

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-24

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

5

Transport Layer 3-25

Reliable data transfer: getting started
We’ll:

incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 3-26

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-27

Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”
during conversation?

Transport Layer 3-28

Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-29

rdt2.0: FSM specification

Wait for
call from
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

belowsender

receiver
rdt_send(data)

Λ

Transport Layer 3-30

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

6

Transport Layer 3-31

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

Transport Layer 3-32

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?
sender doesn’t know what
happened at receiver!
can’t just retransmit:
possible duplicate

Handling duplicates:
sender retransmits current
pkt if ACK/NAK garbled
sender adds sequence
number to each pkt
receiver discards (doesn’t
deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

Transport Layer 3-33

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

ΛΛ

Transport Layer 3-34

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-35

rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #’s (0,1) will
suffice. Why?
must check if received
ACK/NAK corrupted
twice as many states

state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
must check if received
packet is duplicate

state indicates whether
0 or 1 is expected pkt
seq #

note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-36

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt
received OK

receiver must explicitly include seq # of pkt being ACKed
duplicate ACK at sender results in same action as
NAK: retransmit current pkt

7

Transport Layer 3-37

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM

fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

Transport Layer 3-38

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK
retransmits if no ACK
received in this time
if pkt (or ACK) just delayed
(not lost):

retransmission will be
duplicate, but use of seq.
#’s already handles this
receiver must specify seq
of pkt being ACKed

requires countdown timer

Transport Layer 3-39

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

Transport Layer 3-40

rdt3.0 in action

Transport Layer 3-41

rdt3.0 in action

Transport Layer 3-42

Performance of rdt3.0

rdt3.0 works, but performance stinks
ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link
network protocol limits use of physical resources!

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans

8

Transport Layer 3-43

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

Transport Layer 3-44

Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-45

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Transport Layer 3-46

Pipelined Protocols

Go-back-N: big picture:
sender can have up to
N unacked packets in
pipeline
rcvr only sends
cumulative acks

doesn’t ack packet if
there’s a gap

sender has timer for
oldest unacked packet

if timer expires,
retransmit all unack’ed
packets

Selective Repeat: big pic
sender can have up to
N unack’ed packets in
pipeline
rcvr sends individual
ack for each packet
sender maintains timer
for each unacked
packet

when timer expires,
retransmit only
unack’ed packet

Transport Layer 3-47

Go-Back-N
Sender:

k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
may receive duplicate ACKs (see receiver)

timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-48

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

9

Transport Layer 3-49

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

may generate duplicate ACKs
need only remember expectedseqnum

out-of-order pkt:
discard (don’t buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

Λ

Transport Layer 3-50

GBN in
action

Transport Layer 3-51

Selective Repeat

receiver individually acknowledges all correctly
received pkts

buffers pkts, as needed, for eventual in-order delivery
to upper layer

sender only resends pkts for which ACK not
received

sender timer for each unACKed pkt
sender window

N consecutive seq #’s
again limits seq #s of sent, unACK’ed pkts

Transport Layer 3-52

Selective repeat: sender, receiver windows

Transport Layer 3-53

Selective repeat

data from above :
if next available seq # in
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received
if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)
otherwise:

ignore

receiver

Transport Layer 3-54

Selective repeat in action

10

Transport Layer 3-55

Selective repeat:
dilemma

Example:
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no
difference in two
scenarios!
incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Transport Layer 3-56

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-57

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow
in same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

flow controlled:
sender will not
overwhelm receiver

point-to-point:
one sender, one receiver

reliable, in-order byte
steam:

no “message boundaries”
pipelined:

TCP congestion and flow
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 3-58

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-59

TCP seq. #’s and ACKs
Seq. #’s:

byte stream
“number” of first
byte in segment’s
data

ACKs:
seq # of next byte
expected from
other side
cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-60

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
longer than RTT

but RTT varies
too short:
premature timeout

unnecessary
retransmissions

too long: slow
reaction to segment
loss

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK
receipt

ignore retransmissions
SampleRTT will vary, want
estimated RTT “smoother”

average several recent
measurements, not just
current SampleRTT

11

Transport Layer 3-61

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

Transport Layer 3-62

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Transport Layer 3-63

TCP Round Trip Time and Timeout

Setting the timeout
EstimatedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

Transport Layer 3-64

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-65

TCP reliable data transfer

TCP creates rdt
service on top of IP’s
unreliable service
pipelined segments
cumulative acks
TCP uses single
retransmission timer

retransmissions are
triggered by:

timeout events
duplicate acks

initially consider
simplified TCP sender:

ignore duplicate acks
ignore flow control,
congestion control

Transport Layer 3-66

TCP sender events:
data rcvd from app:

Create segment with
seq #
seq # is byte-stream
number of first data
byte in segment
start timer if not
already running (think
of timer as for oldest
unacked segment)
expiration interval:
TimeOutInterval

timeout:
retransmit segment
that caused timeout
restart timer

Ack rcvd:
If acknowledges
previously unacked
segments

update what is known to
be acked
start timer if there are
outstanding segments

12

Transport Layer 3-67

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
acked byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-68

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-69

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-70

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-71

Fast Retransmit

time-out period often
relatively long:

long delay before
resending lost packet

detect lost segments
via duplicate ACKs.

sender often sends
many segments back-to-
back
if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

fast retransmit: resend
segment before timer
expires

Transport Layer 3-72

Host A

ti
m

eo
ut

Host B

time

X

resend 2nd segment

Figure 3.37 Resending a segment after triple duplicate ACK

13

Transport Layer 3-73

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-74

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-75

TCP Flow Control

receive side of TCP
connection has a
receive buffer:

speed-matching
service: matching the
send rate to the
receiving app’s drain
rateapp process may be

slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-76

TCP Flow control: how it works

(suppose TCP receiver
discards out-of-order
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

rcvr advertises spare
room by including value
of RcvWindow in
segments
sender limits unACKed
data to RcvWindow

guarantees receive
buffer doesn’t overflow

Transport Layer 3-77

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-78

TCP Connection Management
Recall: TCP sender, receiver

establish “connection”
before exchanging data
segments
initialize TCP variables:

seq. #s
buffers, flow control
info (e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
specifies initial seq #
no data

Step 2: server host receives
SYN, replies with SYNACK
segment

server allocates buffers
specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

14

Transport Layer 3-79

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Transport Layer 3-80

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer 3-81

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-82

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-83

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much
data too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top-10 problem!

Transport Layer 3-84

Causes/costs of congestion: scenario 1

two senders, two
receivers
one router,
infinite buffers
no retransmission

large delays
when congested
maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

15

Transport Layer 3-85

Causes/costs of congestion: scenario 2

one router, finite buffers
sender retransmission of timed-out packet

application-layer input = application-layer output: λin = λout

transport-layer input includes retransmissions : λin λin

finite shared output
link buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

‘

Transport Layer 3-86

Congestion scenario 2a: ideal case

sender sends
only when router
buffers available

finite shared output
link buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

copy

R/2

R/2λin

λ o
ut

free buffer space!

Transport Layer 3-87

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

copy

no buffer space!

packets may get
dropped at router due
to full buffers

sometimes lost
sender only resends if
packet known to be lost
(admittedly idealized)

Congestion scenario 2b: known loss

Transport Layer 3-88

Congestion scenario 2b: known loss

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

free buffer space!

packets may get
dropped at router due
to full buffers

sometimes not lost
sender only resends if
packet known to be lost
(admittedly idealized)

R/2

R/2λin

λ o
ut

when sending at
R/2, some packets
are retransmissions
but asymptotic
goodput is still R/2
(why?)

Transport Layer 3-89

packets may get
dropped at router due
to full buffers
sender times out
prematurely, sending
two copies, both of
which are delivered

Host A

λin

Host B

λoutλ'incopy

free buffer space!

Congestion scenario 2c: duplicates

timeout

R/2

R/2λin

λ o
ut

when sending at
R/2, some packets
are retransmissions
including duplicated
that are delivered!

Transport Layer 3-90

packets may get
dropped at router due
to full buffers
sender times out
prematurely, sending
two copies, both of
which are delivered

Congestion scenario 2c: duplicates
R/2

λ o
ut

when sending at
R/2, some packets
are retransmissions
including duplicated
that are delivered!

“costs” of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies of pkt

decreasing goodput

R/2λin

16

Transport Layer 3-91

Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-92

Causes/costs of congestion: scenario 3

another “cost” of congestion:
when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

Transport Layer 3-93

Approaches towards congestion control

end-end congestion
control:
no explicit feedback from
network
congestion inferred from
end-system observed loss,
delay
approach taken by TCP

network-assisted
congestion control:
routers provide feedback
to end systems

single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)
explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-94

Case study: ATM ABR congestion control

ABR: available bit rate:
“elastic service”
if sender’s path
“underloaded”:

sender should use
available bandwidth

if sender’s path
congested:

sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:
sent by sender, interspersed
with data cells
bits in RM cell set by switches
(“network-assisted”)

NI bit: no increase in rate
(mild congestion)
CI bit: congestion
indication

RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-95

Case study: ATM ABR congestion control

two-byte ER (explicit rate) field in RM cell
congested switch may lower ER value in cell
sender’ send rate thus maximum supportable rate on path

EFCI bit in data cells: set to 1 in congested switch
if data cell preceding RM cell has EFCI set, sender sets CI
bit in returned RM cell

Transport Layer 3-96

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

17

Transport Layer 3-97

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

additive increase: increase cwnd by 1 MSS every
RTT until loss detected
multiplicative decrease: cut cwnd in half after
loss

time

c
w
n
d

: c
on

ge
st

io
n

w
in

do
w

 s
iz

e

saw tooth
behavior: probing

for bandwidth

Transport Layer 3-98

TCP Congestion Control: details

sender limits transmission:
LastByteSent-LastByteAcked

≤ cwnd

roughly,

cwnd is dynamic, function of
perceived network congestion

How does sender
perceive congestion?
loss event = timeout or
3 duplicate acks
TCP sender reduces
rate (cwnd) after loss
event

three mechanisms:
AIMD
slow start
conservative after
timeout events

rate = cwnd
RTT Bytes/sec

Transport Layer 3-99

TCP Slow Start

when connection
begins, increase rate
exponentially until
first loss event:

initially cwnd = 1 MSS
double cwnd every RTT
done by incrementing
cwnd for every ACK
received

summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Transport Layer 3-100

Refinement: inferring loss
after 3 dup ACKs:

cwnd is cut in half
window then grows
linearly

but after timeout event:
cwnd instead set to 1
MSS;
window then grows
exponentially
to a threshold, then
grows linearly

3 dup ACKs indicates
network capable of
delivering some segments

timeout indicates a
“more alarming”
congestion scenario

Philosophy:

Transport Layer 3-101

Refinement
Q: when should the

exponential
increase switch to
linear?

A: when cwnd gets to
1/2 of its value
before timeout.

Implementation:
variable ssthresh
on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

Transport Layer 3-102

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

18

Transport Layer 3-103

TCP throughput

what’s the average throughout of TCP as a
function of window size and RTT?

ignore slow start
let W be the window size when loss occurs.

when window is W, throughput is W/RTT
just after loss, window drops to W/2,
throughput to W/2RTT.
average throughout: .75 W/RTT

Transport Layer 3-104

TCP Futures: TCP over “long, fat pipes”

example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput
requires window size W = 83,333 in-flight
segments
throughput in terms of loss rate:

 L = 2·10-10 Wow – a very small loss rate!
new versions of TCP for high-speed

LRTT
MSS⋅22.1

Transport Layer 3-105

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 3-106

Why is TCP fair?
two competing sessions:

additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-107

Fairness (more)
Fairness and UDP

multimedia apps often
do not use TCP

do not want rate
throttled by congestion
control

instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel
connections between 2
hosts.
web browsers do this
example: link of rate R
supporting 9 connections;

new app asks for 1 TCP, gets
rate R/10
new app asks for 11 TCPs,
gets R/2 !

Transport Layer 3-108

Chapter 3: Summary
principles behind transport
layer services:

multiplexing,
demultiplexing
reliable data transfer
flow control
congestion control

instantiation and
implementation in the
Internet

UDP
TCP

Next:
leaving the network
“edge” (application,
transport layers)
into the network
“core”

