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Chapter 3: Transport Layer
Our goals:

understand principles 
behind transport 
layer services:

multiplexing/demultipl
exing
reliable data transfer
flow control
congestion control

learn about transport 
layer protocols in the 
Internet:

UDP: connectionless 
transport
TCP: connection-oriented 
transport
TCP congestion control
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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Transport services and protocols
provide logical communication
between app processes 
running on different hosts
transport protocols run in 
end systems 

send side: breaks app 
messages into segments, 
passes to  network layer
rcv side: reassembles 
segments into messages, 
passes to app layer

more than one transport 
protocol available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport
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Transport vs. network layer

network layer: logical 
communication 
between hosts
transport layer: logical 
communication 
between processes 

relies on, enhances, 
network layer services

Household analogy:
12 kids sending letters to 

12 kids
processes = kids
app messages = letters 
in envelopes
hosts = houses
transport protocol = 
Ann and Bill who demux 
to in-house siblings
network-layer protocol 
= postal service
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Internet transport-layer protocols

reliable, in-order 
delivery (TCP)

congestion control 
flow control
connection setup

unreliable, unordered 
delivery: UDP

no-frills extension of 
“best-effort” IP

services not available: 
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

logical end-end transport
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:
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How demultiplexing works
host receives IP 
datagrams

each datagram has source 
IP address, destination IP 
address
each datagram carries 1 
transport-layer segment
each segment has source, 
destination port number 

host uses IP addresses & 
port numbers to direct 
segment to appropriate 
socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing

recall: create sockets with 
host-local port numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(12534);

DatagramSocket mySocket2 = new 
DatagramSocket(12535);

recall: when creating 
datagram to send into UDP 
socket, must specify

(dest IP address, dest port number)

when host receives UDP 
segment:

checks destination port 
number in segment
directs UDP segment to 
socket with that port 
number

IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket
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Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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Connection-oriented demux

TCP socket identified 
by 4-tuple: 

source IP address
source port number
dest IP address
dest port number

recv host uses all four 
values to direct 
segment to appropriate 
socket

server host may support 
many simultaneous TCP 
sockets:

each socket identified by 
its own 4-tuple

web servers have 
different sockets for 
each connecting client

non-persistent HTTP will 
have different socket for 
each request
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Connection-oriented demux 
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Connection-oriented demux: 
Threaded Web Server

client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport 
protocol
“best effort” service, UDP 
segments may be:

lost
delivered out of order 
to app

connectionless:
no handshaking between 
UDP sender, receiver
each UDP segment 
handled independently 
of others

Why is there a UDP?
no connection 
establishment (which can 
add delay)
simple: no connection state 
at sender, receiver
small segment header
no congestion control: UDP 
can blast away as fast as 
desired
Voice?
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UDP: more

often used for 
streaming multimedia 
apps

loss tolerant
rate sensitive

other UDP uses
DNS
SNMP

reliable transfer over 
UDP: add reliability at 
application layer

application-specific 
error recovery!

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header
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UDP checksum

Sender:
treat segment contents 
as sequence of 16-bit 
integers
checksum: addition (1’s 
complement sum) of 
segment contents
sender puts checksum 
value into UDP checksum 
field

Receiver:
compute checksum of 
received segment
check if computed checksum 
equals checksum field value:

NO - error detected
YES - no error detected. 
But maybe errors 
nonetheless? More later 
….

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment
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Internet Checksum Example
Note: when adding numbers, a carryout from 
the most significant bit needs to be added 
to the result
Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started
We’ll:

incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM)  to specify 
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver
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Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”
during conversation?
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Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

Wait for 
call from 
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

belowsender

receiver
rdt_send(data)

Λ
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rdt2.0: operation with no errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below

rdt_send(data)

Λ
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rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?
sender doesn’t know what 
happened at receiver!
can’t just retransmit: 
possible duplicate

Handling duplicates: 
sender retransmits current 
pkt if ACK/NAK garbled
sender adds sequence 
number to each pkt
receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.1: sender, handles garbled ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

ΛΛ
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #’s (0,1) will 
suffice.  Why?
must check if received 
ACK/NAK corrupted 
twice as many states

state must “remember”
whether “current” pkt 
has 0 or 1 seq. #

Receiver:
must check if received 
packet is duplicate

state indicates whether 
0 or 1 is expected pkt 
seq #

note: receiver can not
know if its last 
ACK/NAK received OK 
at sender

Transport Layer 3-36

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt 
received OK

receiver must explicitly include seq # of pkt being ACKed 
duplicate ACK at sender results in same action as 
NAK: retransmit current pkt
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rdt2.2: sender, receiver fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0
sender FSM

fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)

checksum, seq. #, ACKs, 
retransmissions will be 
of help, but not enough

Approach: sender waits 
“reasonable” amount of 
time for ACK 
retransmits if no ACK 
received in this time
if pkt (or ACK) just delayed 
(not lost):

retransmission will be  
duplicate, but use of seq. 
#’s already handles this
receiver must specify seq 
# of pkt being ACKed

requires countdown timer
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rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ
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rdt3.0 in action
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rdt3.0 in action
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Performance of rdt3.0

rdt3.0 works, but performance stinks
ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

U sender: utilization – fraction of time sender busy sending

U 
sender =

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

= 

if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput 
over 1 Gbps link
network protocol limits use of physical resources!

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send 
ACK

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender = 

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

= 
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Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

two generic forms of pipelined protocols: go-Back-N, 
selective repeat
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U 
sender = 

.024 
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

= 

Increase utilization
by a factor of 3!
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Pipelined Protocols

Go-back-N: big picture:
sender can have up to 
N unacked packets in 
pipeline
rcvr only sends 
cumulative acks

doesn’t ack packet if 
there’s a gap

sender has timer for 
oldest unacked packet

if timer expires, 
retransmit all unack’ed 
packets

Selective Repeat: big pic
sender can have up to 
N unack’ed packets in 
pipeline
rcvr sends individual 
ack for each packet
sender maintains timer 
for each unacked 
packet

when timer expires, 
retransmit only 
unack’ed packet
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Go-Back-N
Sender:

k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
may receive duplicate ACKs (see receiver)

timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

Λ
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GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt 
with highest in-order seq #

may generate duplicate ACKs
need only remember expectedseqnum

out-of-order pkt: 
discard (don’t buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    
make_pkt(expectedseqnum,ACK,chksum)

Λ
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GBN in
action
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Selective Repeat

receiver individually acknowledges all correctly 
received pkts

buffers pkts, as needed, for eventual in-order delivery 
to upper layer

sender only resends pkts for which ACK not 
received

sender timer for each unACKed pkt
sender window

N consecutive seq #’s
again limits seq #s of sent, unACK’ed pkts
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Selective repeat: sender, receiver windows

Transport Layer 3-53

Selective repeat

data from above :
if next available seq # in 
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received
if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)
otherwise:

ignore 

receiver
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Selective repeat in action
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Selective repeat:
dilemma

Example: 
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no 
difference in two 
scenarios!
incorrectly passes 
duplicate data as new 
in (a)

Q: what relationship 
between seq # size 
and window size?
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow 
in same connection
MSS: maximum segment 
size

connection-oriented:
handshaking (exchange 
of control msgs) inits 
sender, receiver state 
before data exchange

flow controlled:
sender will not 
overwhelm receiver

point-to-point:
one sender, one receiver

reliable, in-order byte 
steam:

no “message boundaries”
pipelined:

TCP congestion and flow 
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP seq. #’s and ACKs
Seq. #’s:

byte stream 
“number” of first 
byte in segment’s 
data

ACKs:
seq # of next byte 
expected from 
other side
cumulative ACK

Q: how receiver handles 
out-of-order segments

A: TCP spec doesn’t 
say, - up to 
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-60

TCP Round Trip Time and Timeout

Q: how to set TCP 
timeout value?
longer than RTT

but RTT varies
too short: 
premature timeout

unnecessary 
retransmissions

too long: slow 
reaction to segment 
loss

Q: how to estimate RTT?
SampleRTT: measured time from 
segment transmission until ACK 
receipt

ignore retransmissions
SampleRTT will vary, want 
estimated RTT “smoother”

average several recent 
measurements, not just 
current SampleRTT



11

Transport Layer 3-61

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

Transport Layer 3-62

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout
EstimatedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from 
EstimatedRTT: 

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

Transport Layer 3-64

Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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TCP reliable data transfer

TCP creates rdt 
service on top of IP’s 
unreliable service
pipelined segments
cumulative acks
TCP uses single 
retransmission timer

retransmissions are 
triggered by:

timeout events
duplicate acks

initially consider 
simplified TCP sender:

ignore duplicate acks
ignore flow control, 
congestion control
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TCP sender events:
data rcvd from app:

Create segment with 
seq #
seq # is byte-stream 
number of first data 
byte in  segment
start timer if not 
already running (think 
of timer as for oldest 
unacked segment)
expiration interval: 
TimeOutInterval 

timeout:
retransmit segment 
that caused timeout
restart timer

Ack rcvd:
If acknowledges 
previously unacked 
segments

update what is known to 
be acked
start timer if there are  
outstanding segments
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TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum 
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
acked byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked
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TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100
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TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap
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Fast  Retransmit

time-out period  often 
relatively long:

long delay before 
resending lost packet

detect lost segments 
via duplicate ACKs.

sender often sends 
many segments back-to-
back
if segment is lost, there 
will likely be many 
duplicate ACKs.

if sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed 
data was lost:

fast retransmit: resend 
segment before timer 
expires
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Host A

ti
m

eo
ut

Host B

time

X

resend 2nd segment

Figure 3.37 Resending a segment after triple duplicate ACK
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event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for 
already ACKed segment

fast retransmit
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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TCP Flow Control

receive side of TCP 
connection has a 
receive buffer:

speed-matching 
service: matching the 
send rate to the 
receiving app’s drain 
rateapp process may be 

slow at reading from 
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
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TCP Flow control: how it works

(suppose TCP receiver 
discards out-of-order 
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

rcvr advertises spare 
room by including value 
of RcvWindow in 
segments
sender limits unACKed 
data to RcvWindow

guarantees receive 
buffer doesn’t overflow
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Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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TCP Connection Management
Recall: TCP sender, receiver 

establish “connection”
before exchanging data 
segments
initialize TCP variables:

seq. #s
buffers, flow control 
info (e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new   
Socket("hostname","port 

number");

server: contacted by client
Socket connectionSocket = 
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP 

SYN segment to server
specifies initial seq #
no data

Step 2: server host receives 
SYN, replies with SYNACK 
segment

server allocates buffers
specifies server initial 
seq. #

Step 3: client receives SYNACK, 
replies with ACK segment, 
which may contain data
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system 
sends TCP FIN control 
segment to server

Step 2: server receives 
FIN, replies with ACK. 
Closes connection, sends 
FIN. 

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t
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TCP Connection Management (cont.)

Step 3: client receives FIN, 
replies with ACK. 

Enters “timed wait” -
will respond with ACK 
to received FINs 

Step 4: server, receives 
ACK.  Connection closed. 

Note: with small 
modification, can handle 
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed
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TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-82

Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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Principles of Congestion Control

Congestion:
informally: “too many sources sending too much 
data too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top-10 problem!

Transport Layer 3-84

Causes/costs of congestion: scenario 1

two senders, two 
receivers
one router, 
infinite buffers 
no retransmission

large delays 
when congested
maximum 
achievable 
throughput

unlimited shared 
output link buffers

Host A
λin : original data

Host B

λout
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Causes/costs of congestion: scenario 2

one router, finite buffers 
sender retransmission of timed-out packet

application-layer input = application-layer output: λin = λout

transport-layer input includes retransmissions : λin λin

finite shared output 
link buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

‘
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Congestion scenario 2a: ideal case 

sender sends 
only when router 
buffers available 

finite shared output 
link buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

copy

R/2

R/2λin

λ o
ut

free buffer space!
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Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

copy

no buffer space!

packets may get 
dropped at router due  
to full buffers

sometimes lost
sender only resends if 
packet known to be lost 
(admittedly idealized)

Congestion scenario 2b: known loss 

Transport Layer 3-88

Congestion scenario 2b: known loss 

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

free buffer space!

packets may get 
dropped at router due  
to full buffers

sometimes not lost
sender only resends if 
packet known to be lost 
(admittedly idealized)

R/2

R/2λin

λ o
ut

when sending at 
R/2, some packets 
are retransmissions 
but asymptotic 
goodput is still R/2 
(why?)
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packets may get 
dropped at router due  
to full buffers
sender times out 
prematurely, sending 
two copies, both of 
which are delivered

Host A

λin

Host B

λoutλ'incopy

free buffer space!

Congestion scenario 2c: duplicates

timeout

R/2

R/2λin

λ o
ut

when sending at 
R/2, some packets 
are retransmissions 
including duplicated 
that are delivered!

Transport Layer 3-90

packets may get 
dropped at router due  
to full buffers
sender times out 
prematurely, sending 
two copies, both of 
which are delivered

Congestion scenario 2c: duplicates
R/2

λ o
ut

when sending at 
R/2, some packets 
are retransmissions 
including duplicated 
that are delivered!

“costs” of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies of pkt

decreasing goodput

R/2λin
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Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in

finite shared output 
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus 
retransmitted data
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Causes/costs of congestion: scenario 3

another “cost” of congestion:
when packet dropped, any “upstream transmission 
capacity used for that packet was wasted!

H
o
s
t 
A

H
o
s
t 
B

λ
o
u

t
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Approaches towards congestion control

end-end congestion 
control:
no explicit feedback from 
network
congestion inferred from 
end-system observed loss, 
delay
approach taken by TCP

network-assisted 
congestion control:
routers provide feedback 
to end systems

single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)
explicit rate sender 
should send at

Two broad approaches towards congestion control:
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Case study: ATM ABR congestion control

ABR: available bit rate:
“elastic service”
if sender’s path 
“underloaded”: 

sender should use 
available bandwidth

if sender’s path 
congested: 

sender throttled to 
minimum guaranteed 
rate

RM (resource management) 
cells:
sent by sender, interspersed 
with data cells
bits in RM cell set by switches 
(“network-assisted”) 

NI bit: no increase in rate 
(mild congestion)
CI bit: congestion 
indication

RM cells returned to sender by 
receiver, with bits intact
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Case study: ATM ABR congestion control

two-byte ER (explicit rate) field in RM cell
congested switch may lower ER value in cell
sender’ send rate thus maximum supportable rate on path

EFCI bit in data cells: set to 1 in congested switch
if data cell preceding RM cell has EFCI set, sender sets CI 
bit in returned RM cell

Transport Layer 3-96

Chapter 3 outline

3.1 Transport-layer 
services

3.2 Multiplexing and 
demultiplexing

3.3 Connectionless 
transport: UDP

3.4 Principles of reliable 
data transfer

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control
connection management

3.6 Principles of 
congestion control

3.7 TCP congestion control
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TCP congestion control: additive increase, 
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

approach: increase transmission rate (window size), 
probing for usable bandwidth, until loss occurs

additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected
multiplicative decrease: cut cwnd in half after 
loss 

time

c
w
n
d

: c
on

ge
st

io
n 

w
in

do
w

 s
iz

e

saw tooth
behavior: probing

for bandwidth

Transport Layer 3-98

TCP Congestion Control: details

sender limits transmission:
LastByteSent-LastByteAcked

≤ cwnd

roughly,

cwnd is dynamic, function of 
perceived network congestion

How does  sender 
perceive congestion?
loss event = timeout or
3 duplicate acks
TCP sender reduces 
rate (cwnd) after loss 
event

three mechanisms:
AIMD
slow start
conservative after 
timeout events

rate = cwnd
RTT Bytes/sec
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TCP Slow Start 

when connection 
begins, increase rate 
exponentially until 
first loss event:

initially cwnd = 1 MSS
double cwnd every RTT
done by incrementing 
cwnd for every ACK 
received

summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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Refinement: inferring loss
after 3 dup ACKs:

cwnd is cut in half
window then grows 
linearly

but after timeout event:
cwnd instead set to 1 
MSS; 
window then grows 
exponentially
to a threshold, then 
grows linearly

3 dup ACKs indicates 
network capable of 
delivering some segments

timeout indicates a 
“more alarming”
congestion scenario

Philosophy:

Transport Layer 3-101

Refinement
Q: when should the 

exponential 
increase switch to 
linear? 

A: when cwnd gets to 
1/2 of its value 
before timeout.

Implementation:
variable ssthresh
on loss event, ssthresh is 
set to 1/2 of cwnd just 
before loss event
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Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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TCP throughput

what’s the average throughout of TCP as a 
function of window size and RTT?

ignore slow start
let W be the window size when loss occurs.

when window is W, throughput is W/RTT
just after loss, window drops to W/2, 
throughput to W/2RTT. 
average throughout: .75 W/RTT
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TCP Futures: TCP over “long, fat pipes”

example: 1500 byte segments, 100ms RTT, want 10 
Gbps throughput
requires window size W = 83,333 in-flight 
segments
throughput in terms of loss rate:

 L = 2·10-10  Wow – a very small loss rate!
new versions of TCP for high-speed

LRTT
MSS⋅22.1
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fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness
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Why is TCP fair?
two competing sessions:

additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-107

Fairness (more)
Fairness and UDP

multimedia apps often 
do not use TCP

do not want rate 
throttled by congestion 
control

instead use UDP:
pump audio/video at 
constant rate, tolerate 
packet loss

Fairness and parallel TCP 
connections
nothing prevents app from 
opening parallel 
connections between 2 
hosts.
web browsers do this 
example: link of rate R 
supporting 9 connections; 

new app asks for 1 TCP, gets 
rate R/10
new app asks for 11 TCPs, 
gets R/2 !
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Chapter 3: Summary
principles behind transport 
layer services:

multiplexing, 
demultiplexing
reliable data transfer
flow control
congestion control

instantiation and 
implementation in the 
Internet

UDP
TCP

Next:
leaving the network 
“edge” (application, 
transport layers)
into the network 
“core”


