COMPUTER
NETWORKING

Chapter 3
Transport Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).

They're in PowerPoint form so you can add, modify, and delete slides P
(including this one) and slide content to suit your needs. They obviously Computer Networking:
represent a lot of work on our part. In return for use, we only ask the A Top Down Approach
following: 5th edition.

= If you se these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we'd like people to use our bookl)

= If you post any slides in substantially unaltered form on a www site, that
You note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Thanks and enjoy! JFKIKWR

All material copyright 1996-2010
J.F Kurose and KW. Ross, All Rights Reserved
Transport Layer ~ 3-1

Chapter 3: Transport Layer

Our goals:
« understand principles
behind transport

« learn about transport
layer protocols in the

layer services: Internet:

= multiplexing/demultipl = UDP: connectionless
exing transport

= reliable data transfer = TCP: connection-oriented

= flow control fransport

TCP congestion control

congestion control

Transport Layer ~ 3-2

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

> provide /ogical communication

between app processes
running on different hosts
> transport protocols run in
end systems
= send side: breaks app
messages info segments,
passes to network layer
= rcv side: reassembles
segments into messages,
passes to app layer
> more than one transport
protocol available to apps
= Internet: TCP and UDP

Transport Layer 3-4

Transport vs. network layer

« network layer: logical
communication
between hosts

« transport layer: logical
communication
between processes

= relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

« processes = kids

app messages = letters

in envelopes

+ hosts = houses

transport protocol =

Ann and Bill who demux

to in-house siblings

network-layer protocol

= postal service

3

R

R

Es

Transport Layer ~ 3-5

Internet transport-layer protocols

< reliable, in-order
delivery (TCP)
= congestion control
= flow control
= connection setup

< unreliable, unordered
delivery: UDP
= no-frills extension of

“best-effort” IP

+ services not available:
= delay guarantees
= bandwidth guarantees

[data Tk |

I [retwork |
&
Oy]

&

e O N
»_%7

) Cohsical by
[dote &)
.

Transport Layer 36

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer

Multiplexing/demultiplexing

Demultiplexing at rcv host:
delivering received segments
to correct socket

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[= socket O = process
application (P3D (PLD application (P2 (P4 application
C 1 1
transport “¥ron port transport
network ork network
link ink link
physical hysicat physical
host 1 host 2 host 3

Transport Layer

How demultiplexing works

% host receives IP
datagrams

= each datagram has source
IP address, destination IP

address
= each datagram carries 1

32 bits

source port #l dest port #

other header fields

transport-layer segment
= each segment has source,
destination port number
% host uses IP addresses &
port numbers to direct
segment o appropriate
socket

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

« recall: create sockets with
host-local port numbers:
DatagramSocket mySocketl = new

DatagramSocket(12534);
DatagramSocket mySocket2 = new
DatagramSocket(12535);
« recall: when creating
datagram to send into UDP
socket, must specify

(dest IP address, dest port number)

« when host receives UDP
segment:
= checks destination port
number in segment
= directs UDP segment to
socket with that port
number
« IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157

SP: 5775

client DP: 6428

IP: A

server
IP: C

SP provides "return address”

DP: 6428 Client

IP:B

Transport Layer 3-11

Connection-oriented demux

% TCP socket identified B3
by 4-tuple:
= source IP address
= source port number
= dest IP address
= dest port number
+ recv host uses all four
values to direct
segment o appropriate
socket

server host may support
many simultaneous TCP
sockets:
= each socket identified by
its own 4-tuple
web servers have
different sockets for
each connecting client
= non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux

(cont)

SP: 5775
DP: 80
SIP: B
D-IP:C
SP: 9157 SP: 9157
client | DP: 80 server DP: 80 Client
IPPA [SIPA : S-IP: B P8
IP: C
D-IP:C D-IP:C

Transport Layer 313

Connection-oriented demux:

Threaded Web Server

2l = B
SP: 5775
DP: 80
S-IP: B
D-IP:C
o
SP: 9157 SP: 9157
client | DP:80 server DP: 80 client
IPPA | SIPA . S-IP: B P:8
IP: C
D-IP:C D-IP:C

Transport Layer 3-14

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

<+ “no frills,” "bare bones"
Internet transport Why is there a UDP?
EF°T°C°' L + no connection
+ "best effort” service, UDP establishment (which can
segments may be: add delay)
= lost « simple: no connection state
= delivered out of order at sender, receiver
fo app + small segment header
+ connectionless: « no congestion control: UDP
= no handshaking between can blast away as fast as
UDP sender, receiver desired
= each UDP segment <+ Voice?
handled independently
of others

Transport Layer 3-16

UDP: more

« often used for

) . . 32 bits
streaming multimedia
apps Length, in [source port #| dest port #
= loss tolerant bytes of UDP [length checksum
. segment,
= rate sensitive including
« other UDP uses header
= DNS
Application
- _SNMP data
+ reliable transfer over (message)
UDP: add reliability at

application layer
= application-specific
error recovery!

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
« treat segment contents « compute checksum of
as sequence of 16-bit received segment
integers + check if computed checksum
« checksum: addition (1's equals checksum field value:
complement sum) of = NO - error detected
segment confents = YES - no error detected.
« sender puts checksum But maybe errors
\;9'?; into UDP checksum nonetheless? More later
iel

Transport Layer 3-18

Internet Checksum Example

+ Note: when adding numbers, a carryout from
the most significant bit needs to be added
to the result

« Example: add two 16-bit integers

1
1

(SN
o=
[N
oo
-
[=]
-
oo
- -
[=]
-
oo
[N
o
-

wmpar‘ound@loll101110111011

sum 1
checksum]

-}
O~
o
o=
)
-
-
=)
-
-
-
-
o
o

Transport Layer 3-19

Chapter 3 outline

3.5 Connection-oriented
transport: TCP

= segment structure

3.1 Transport-layer
services

3.2 Multiplexing and

demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

* reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer 3-20

Principles of Reliable data transfer

« important in app., transport, link layers
% top-10 list of important networking topics!
&

L+]

82

as

[+}

[+]

5 (Jreliable charinel)
g8

285

58

(@) provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

+ important in app., transport, link layers
> top-10 list of important networking topics!

32

ol

a

[s]

] (Jreliable channel

23

&

=

54

(Freeiobie shomme)d
{a) provided service {b) service implementation

% characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of Reliable data transfer

« important in app., transport, link layers
> top-10 list of important networking topics!

application
layer

elable data
transter protocel

[EE]fdeliver data()
reficble data
b trarsfer protocol
(sending side) (receiving side)

ude_send (1} frat_sevr

Lo o) 4

{a) provided service (o) service implementation

transport
layer

» characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver fo receiver upper layer

deliver_data(): called by
rdt to deliver data to upper

dola][deliver data()

\ rdt_send() l

send ;]elict?‘lee dchO o reliable data receive
. anster protoc fransfer protocol :
side isending side) o side

udt_send(}: [E==T Irdt_rcv (

/ Lo(iunreliuble channel lJ

rdt_rcv(): called when packet

udt_send(): called by rdt,
arrives on rcv-side of channel

to transfer packet over
unreliable channel to receiver

Transport Layer 3-24

Reliable data transfer: getting started

we'll:
« incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
+ consider only unidirectional data transfer
= but control info will flow on both directions!
« use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 3-25

Rd*11.0: reliable transfer over a reliable channel

« underlying channel perfectly reliable
* no bit errors
* no loss of packets
« separate FSMs for sender, receiver:
= sender sends data into underlying channel
* receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-26

Rdt2.0: channel with bit errors

« underlying channel may flip bits in packet
= checksum to detect bit errors
+ the question: how to recover from errors:

How do humans recover from “errors”
during conversation?

Transport Layer 3-27

Rdt2.0: channel with bit errors

<« underlying channel may flip bits in packet
= checksum to detect bit errors
% the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

sender retransmits pkt on receipt of NAK
+ new mechanisms in rdt2.0 (beyond rdt1.0):
= error detection
= receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)
sndpkt = make_pkt(data, checksum)

receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
iSNAK (rcvpkt)
—_— rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK (revpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
dpk

rdt_rcv(rcvpkt) &&
isNAK (rcvpkt)

—_— rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

—_—
A

jdt_rev(revpky) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

10

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(revpkt) && isACK(rcvpkt)
R e ————
A

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 331

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? = sender retransmits current

+ sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! %+ sender adds seguence
can't just retransmit: number to each pkt
possible duplicate « receiver discards (doesn't

deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSNAK(rcvpkt))
udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK (revpkt)

A A
rdt_rcv(rcvpkt) &&
(corrupt(revpkt) ||
iSNAK(rcvpkt)) rdt senddata)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

11

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

\

\
rdt_rev(revpkt) & (cormupt(rovpkt) rdt_rev(revpkt) && (cormupt(revpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Sndpkt = make_pki(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
ot corrupt(revpkt) && G
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rev(revpkt) && notcorrupt(revpkt)
&8 has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 334

rdt2.1: discussion

Sender: Receiver:
+ seq # added to pkt « must check if received
« two seq. #'s (0,1) will packet is duplicate
suffice. Why? = state indicates whether
. . 0 or 1is expected pkt
« must check if received seq #
AC_K/NAK corrupted + note: receiver can not
< twice as many states know if its last
= state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1seq. # af sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

« same functionality as rdt2.1, using ACKs only
« instead of NAK, receiver sends ACK for last pkt
received OK
* receiver must explicitly include seq # of pkt being ACKed
« duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

12

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpk) rdt_rev(rovpkt) €&
(corrupt(rcvpkt) ||
iSACK(rcvpkt,1))

udt_send(sndpkt)

sender FSM
fragment rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)

rdt_rev(revpkt) && && isACK(rcvpkt,0)

(corrupt(rcvpkt) ||
has_seql(rcvpkt))

A
receiver FSM

udt_send(sndpkt) fmgmen‘r

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

New assumption:
underlying channel can

also lose packets (data
or ACKs)
= checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

« refransmits if no ACK
received in this time

« if pkt (or ACK) just delayed
(not lost):

= retransmission will be
duplicate, but use of seq.
#'s already handles this

* receiver must specify seq
of pkt being ACKed
+ requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_rcv(revpkt) \ start_timer

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iSACK(revpkt, 1)
stop_timer

timeout
udt_send(sndpkt) C

start_timer (J

rdt_rev(revpkt) &&
(corrupt(revpky ||

rdt_send(data)

\ Sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_send(sndpkt)

rdt_send(data)

sndpkt = make_pkt(L, data, checksum)
iSACK(rcvpkt,0)) udt_send(sndpkt)

—A start_timer

rdt_rcv(rovpkt) &&

iSACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK (rcvpkt,0)
stop_timer

Wait for
call 1 from
above

rdt_rev(revpkt)
A

Transport Layer 3-39

13

rdt3.0 in action

sender receiver

sand pkio ""‘"—-—-..________-_.

sand pit]

ACK send ACKD
rev ACKD /

(o) operation with no loss

[B) lost packet

Transport Layer 3-40

rdt3.0 in action

(] lost ACK (d) premature limeout

Transport Layer 3-41

Performance of rdt3.0

rd+3.0 works, but performance stinks
ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
yans =— = ——5— = 8microseconds
R 10°bps
= U e Utilization - fraction of time sender busy sending
L/R __ 008

U= = = 000027
sender” pTT+L/R 30008

if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

network protocol limits use of physical resources!

Transport Layer 3-42

14

rdt3.0: stop-and-wait operation

sender receiver

first packet bit i t=0
last packet bit transmitted, t =L / R

first packet bit arrives
RTT last packet bit arrives, send
ACK

ACK arrives, send nex
packet, t=RTT +L/R

= I’/—R: 008 = 0.00027

sender RTT+L/R 30.008

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
* range of sequence numbers must be increased
= buffering at sender and/or receiver

il asop-and B

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender receiver
first packet bit i t=0-] |
last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 3¢ packet arrives, send ACK
ACK arrives, send nex
packet, t=RTT+L/R

~ Increase utilization

~ / by a factor of 3!

=_S3TL/R _ 02 _ 45008

v = =
sender poT, L/R 30008

Transport Layer 3-45

15

Pipelined Protocols

Go-back-N: big picture:

Selective Repeat: big pic

+ sender can have up to
N unacked packets in
pipeline

« rcvr only sends
cumulative acks

= doesn't ack packet if
there's a gap

+ sender has timer for
oldest unacked packet

= if timer expires,
retransmit all unack'ed

+ sender can have up to
N unack'ed packets in
pipeline

« rcvr sends /ndividual
ack for each packet

+ sender maintains timer
for each unacked
packet

= when timer expires,

retransmit only
unack'ed packet

packets

Transport Layer 3-46

Go-Back-N

Sender:
« k-bit seq # in pkt header
+ “window" of up to N, consecutive unack'ed pkts allowed

send_base nextsegnum diready usable, not
ack'ed yet sent

¥
WG |z o
window size —%
N

> ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
= may receive duplicate ACKs (see receiver)

« timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
= make im,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextsegnum)
start_timer
nextseqnums++
}
else
refuse_data(data)

Q timeout
start_timer
udt_send(sndpkt[base])
O Q udt_send(sndpkt{base+1])

udt_send(sndpktinextsegnum-1])

rdt_rev(revpkt) &&
notcorrupt(rcvpkt)

nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer Transport Layer 3-48

16

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(rcvpkt)
~——a ([P && notcurrupt(revpkt)

A Tm=al_ && hassegnum(rcvpkt,expectedsegnum)
expectedseqnum=1 lextract(rcvpkt,data)
sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK chksum) ~ sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
* may generate duplicate ACKs
= need only remember expectedseqnum
« out-of-order pkt:
= discard (don't buffer) -> no receiver buffering!
= Re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN |n sender receiver

- send pkid \.
. rev pkio
m send pkd send ACKD
send pki2 ___li?f’b

rev phil
send ACK]

send pkid
pres
(waif) rev pkid, discard
send ACK]
rey ACKD
send pkid
rev ACKT rev phdd, discard
s;r:rj pkts \ send ACKI]
pki2 timeout ;Cévngk,&:g:'ggsccm
send pkizZ

o e % iy

send pktd scnd_}-\'cpg _

send pkts rev pktd, deliver
send ACK3

Transport Layer 3-50

Selective Repeat

« receiver /individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

« sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt
+ sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACK'ed pkts

Transport Layer 3-51

17

Selective repeat: sender, receiver windows

send_base nextsegnum already w=able, not
ack’'ed yet sent

I RTNTITITTT E p

£ window sze—*
PN

(a) sender view of sequence rumisers

(buffered) but | fithin window)
dlready ack'ed

I ety p

t— window size—*
N

out of crder I acceptable

rev_base
(b) receiver view of sequence numbers

Transport Layer 3-52

Selective repeat

—sendep——m8M8 — receiver

data fl"O!’\'\ above : ka N iN [revbase, revbase+N-1]
« if next available seq # in « send ACK(n)

window, send pkt « out-of-order: buffer
timeout(n): « in-order: deliver (also

deliver buffered, in-order

resend pkt n, restart timer X
pkts), advance window to

ACK(n) in [sendbase sendbase+N]: next not-yet-received pkt
r“ark ka n as received ka N in [revbase-N revbase-1]
« if n smallest unACKed pkt, + ACK(n)
advance window base to) ;
next unACKed seq # otherwise:
ignore

Transport Layer 353

Selective repeat in action

t

4587 ES T b 00 rewd, delivered, ACKD semt

. ACKL sent

pkt3 sent, vindow full

. ACK3 sent

pkté rovd, buffersd. ACK4 sent

. ACKS sent

pkt2 rewd, pkt2.pktd,pktd,pktS
delivered, ACK2 sent

sport Layer 354

18

Selective repeat:
dilemma

Example:
+ seq#'s:0,1,2,3
« window size=3

* receiver sees no
difference in two
scenarios!

+ incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

———p rocaive packat
with seq number O

(a)

receive packet
with seq number 0

Transport Layer 355

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented

services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management

3.6 Principles of

congestion control

3.7 TCP congestion control

Transport Layer 356

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

< point-to-point:

= ohe sender, one receiver
+ reliable, in-order byte

steam:

= ho "message boundaries”
« pipelined:

= TCP congestion and flow

control set window size

» send & receive buffers

3

+ full duplex data:
= bi-directional data flow
in same connection
= MSS: maximum segment
size
+ cohnection-oriented:
= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

3

« flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-57

19

TCP segment structure

32 bits
URG: urgent data ti
(generally not used) source port # | dest port # ;‘;ugy;g
ACK: ACK # sequence number of data

valid —{——acknowledgement number (not segments!)
a[ot Joid Moo |
PSH: push data now wsed h‘ﬂg Receive window

(generally not used)—| W Urg data pnter :f:vbr‘wweiﬁing
RST, SYN, FIN: Optiohs (variable length) fo accept

connection estab

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 358

TCP seq. #'s and ACKs

Seq. #'s: @ Host A Host B @

= byte stream

“number” of first User

Seg=4;
types 2 ACK=7g
c) datg = o
host ACKs

byte in segment's
data
ACKs:
= seq # of next byte
expected from

other side host ACKs
cumulative ACK receipt Se

993, Ack-,
Q: how receiver handles of evcc},md &‘
out-of-order segments

= A: TCP spec doesn't
say, - up to
implementor

receipt of

=S ' ech
a3, 0o , echoes
. poKEAS: back 'C
Sea”

time
simple telnet scenario

Transport Layer 359

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how fo estimate RTT?

timeout value?
+ longer than RTT
= but RTT varies
+ too short:
premature timeout
* unnecessary
refransmissions
+ too long: slow
reaction to segment
loss

> SampleRTT: measured time from

segment transmission until ACK
receipt
= ignore retransmissions

+ SampleRTT will vary, want
estimated RTT “"smoother”

= average several recent
measurements, not just
current SampleRTT

Transport Layer 3-60

20

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
« Exponential weighted moving average

« influence of past sample decreases exponentially fast
+ typical value: @ =0.125

Transport Layer 3-61

Example RTT estimation:

RIT: gaia.cs.umass edu to fantasia eurecom fr

RTT (millseconds)

1 s 15 2 2 % 4 0 5 e 71 78 8 %@ 9 16
time (seconnds)

[+=SampleRTT = Esimated RTT

Transport Layer 3-62

TCP Round Trip Time and Timeout

Setting the timeout

+ EstimatedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin
« first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)
Then set timeout interval:

Timeoutlinterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-63

21

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer 3-64

TCP reliable data transfer

% TCP creates rdt
service oh top of IP's
unreliable service

+« pipelined segments
s+ cumulative acks

« TCP uses single
retransmission timer

« retransmissions are
triggered by:
= fimeout events
= duplicate acks

« initially consider
simplified TCP sender:
= ignore duplicate acks

= ignore flow control,
congestion control

Transport Layer 3-65

TCP sender events:

data rcvd from app:

timeout:

« Create segment with
seq #

« seq # is byte-stream
number of first data
byte in segment

« start timer if not
already running (think
of timer as for oldest
unacked segment)

« expiration interval:
TimeOutinterval

< retransmit segment
that caused timeout

+ restart timer

Ack revd:

+ If acknowledges
previously unacked
segments

= update what is known to
be acked

= start timer if there are
outstanding segments

Transport Layer 3-66

22

NextSeqNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

* SendBase-1: last
cumulatively
acked byte
Example:

- SendBase-1=71;
y=73, so the revr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-67

TCP: retransmission scenarios

@Hos? A Host B@ @Hosf A

Seg=g,
| W J;
= g
o £
g - z
] X ¢
l loss &
Seqe Jr
W sendbee |
= 5
SendBase §
. =120 £
[
3
SendBas v
e:nlog BJ SendBase n
=120
time time

lost ACK scenario

premature timeout

Transport Layer 3-68

TCP retransmission scenarios (more)

=120

B viost a Host B @

Seg=
95928 by o

X
Seg= 100, 29 pCK

S data

l
5
3
QO
£
i
loss
SendBase Acvéﬂo

time
Cumulative ACK scenario

Transport Layer 3-69

23

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-70

Fast Retransmit

« time-out period often
relatively long:
= long delay before
resending lost packet
« detect lost segments
via duplicate ACKs.
= sender often sends

« if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

= fast retransmit: resend
segment before timer

many segments back-to- expires
back
= if segment is lost, there
will likely be many
duplicate ACKs.
Transport Layer 3-71
Host A Host B

]

timeout

J

time

\x

L8Seng ong
Segmen;
t

B

Figure 3.37 Resending a segment after triple duplicate ACK

Transport Layer 3-72

24

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y
}

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-73

Chapter 3 outline

3.1 Transport-layer « 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

3.3 Connectionless = flow cantrol

transport: UDP = connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

3.4 Principles of reliable
data transfer

Transport Layer 374

TCP Flow Control

flow control

. . sender won't overflow
« receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

b— RBovWindow —d&

+ speed-matching

daza from TP spplication
P

b * process service: matching the
send rate to the
- RevBuffer 4 receiving app's drain
rate

« app process may be
slow at reading from
buffer

Transport Layer 3-75

25

TCP Flow control: how it works

data fi
P

RovWindow
1 iz, « rcvr advertises spare
e rsicin room by _includipg value
in butfer of ReviWindow in
: J segments
s Revtiufler J

(suppose TCP receiver
discards out-of-order
segments)

+ spare room in buffer

RevWindow

LastByteRead]

% sender limits unACKed
data to RevWindow

* guarantees receive
buffer doesn't overflow

RcvBuffer-[LastByteRcvd -

Transport Layer 376

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Transport Layer 377

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

> initialize TCP variables:
= seq. #s
= buffers, flow control
info (e.g. RevWindow)
+ client: connection initiator

Socket clientSocket = new
Socket("'hostname™,"'port

number');

« server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
= specifies initial seq #
= no data
Step 2: server host receives
SYN, replies with SYNACK
segment
= server allocates buffers
= specifies server initial
seq. #
Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-78

26

TCP Connection Management (cont.)

Closing a connection: 18 client server @)

client closes socket: close

Fin
clientSocket.close();

Step 1: client end system Aok
sends TCP FIN control
segment to server

close
[0

Step 2: server receives ACk
FIN, replies with ACK.
Closes connection, sends

FIN.

d wait

Q. time

close

Transport Layer 3-79

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client Szrvef’@

replies with ACK. closing

= Enters “timed wait" - 2
will respond with ACK
to received FINs pCK .

closing

Step 4: server, receives o

ACK. Connection closed.
ACk

Note: with small

modification, can handle

simultaneous FINs.

d wait

closed

Q. time

close

Transport Layer 3-80

TCP Connection Management (cont)

T
Py o
L e TCP server
! . lifecycle
-
s L] Lot i
TCP client
lifecycle ¥
Last_acw [l
=
*
oo o
v
:!‘YMD -

Transport Layer 3-81

27

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

= flow control

= connection management
3.6 Principles of

congestion control

3.7 TCP congestion control

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

Transport Layer 3-82

Principles of Congestion Control

Congestion:
« informally: “too many sources sending too much
data too fast for network to handle”
« different from flow control!
« manifestations:
= lost packets (buffer overflow at routers)
= long delays (queueing in router buffers)
« a top-10 problem!

Transport Layer 3-83

Causes/costs of congestion: scenario 1

HostA A
Jin' ofiginal data

<+ two senders, two [S
receivers — 1 :P
Host B unlimited shared I
% one router, mp‘m/m".ms

infinite buffers
% no retransmission

o — . . + large delays
5 i 2 } when congested
< © + maximum
i _d__/ { achievable
) ci2) cr2 throughput

Transport Layer 3-84

28

Causes/costs of congestion: scenario 2

<+ ohe router, finite buffers

+ sender retransmission of timed-out packet
= application-layer input = application-layer output: A, = Aoy
= fransport-layer input includes retransmissions : A, =M,

<, original data e
| ..) 1
| 94— L', original data, plus I out
retransmitted data
Host B

— HostA

finite shared output
link buffers
Transport Layer 3-85

Congestion scenario 2a: ideal case

« sender sends
only when router

5
. 3
buffers available <
7 Rz
A’IH
1), : original data)
copy [B8 @«4—)" - original data, plus | = ou
retransmitted data

Host B |

r free buffer space!
Host A

finite shared output
link buffers
Transport Layer 3-86

Congestion scenario 2b: known loss

> packets may get
dropped at router due
to full buffers
= sometimes lost
+ sender only resends if
packet known to be lost
(admittedly idealized)

1 — A, : original data e
1

copy IB @+f—)" - original data, plus “out
retransmitted data

Host B
o]

‘ Host A

no buffer space!

v

Transport Layer 3-87

29

Congestion scenario 2b: known loss

« packets may get
dropped at router due
to full buffers

= sometimes not lost

+ sender only resends if
packet known to be lost
(admittedly idealized)

RI2

A’(Jul

when sending at
R/2, some packets
are refransmissions
but asymptotic
goodput is still R/2

1 — A, : original data

P
[¢y A'jy: original data, plus
retransmitted data
Host B
’7 free buffer space!
— HostA

v

(why?)

Dot

Transport Layer 3-8

Congestion scenario 2¢c: duplicates

+ packets may get
dropped at router due
to full buffers

+ sender times out
prematurely, sending
two copies, both of

Rout

when sending at
R/2, some packets
are retransmissions
including duplicated
that are delivered!

which are delivered e
2,
- E=E
‘ free buffer space!
Host A
Transport Layer 3-89
Congestion scenario 2c: duplicates
> packets may get
dropped at router due R
to full buffers when sending at
+ sender times out 3 R/2. some packets
. < are refransmissions
prematurely, sending including duplicated
two copies, both of that are delivered!
which are delivered ~ 3

“costs" of congestion:

« more work (retrans) for given "goodput”
» unneeded retransmissions: link carries multiple copies of pkt

= decreasing goodput

Transport Layer 3-90

30

Causes/costs of congestion: scenario 3

« four senders Q: what happens as }Li

+ multihop paths and)’ increase ?
+ timeout/retransmit n

- Original data out

-, original data, plus
retransmitted data

finite shared output

link buffe

Transport Layer 3-91

Causes/costs of congestion: scenario 3

Cj2

b=
]
-~

k’
in
another “cost” of congestion:

<« when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-92

Approaches towards congestion control

Two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:

« no explicit feedback from = routers provide feedback
network to end systems

+ congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

« approach taken by TCP ATM)

explicit rate sender
should send at

Transport Layer 3-93

31

Case study: ATM ABR congestion control

ABR: available bit rate:

« “elastic service"

« if sender's path
“underloaded":

= sender should use
available bandwidth

« if sender's path

RM (resource management)

cells:

« sent by sender, interspersed

with data cells

« bits in RM cell set by switches

("network-assisted”)
= NI bit: no increase in rate

congested: (mild congestion)
= sender throttled to = CI bit: congestion
minimum guaranteed indication
rate + RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-94

Case study: ATM ABR congestion control

I M cells
source |:| data cells destination
——
Switch Switch
rul
— X X

+ two-byte ER (explicit rate) field in RM cell

= congested switch may lower ER value in cell

= sender’ send rate thus maximum supportable rate on path
« EFCI bit in data cells: set to 1 in congested switch

= if data cell preceding RM cell has EFCI set, sender sets CI
bit in returned RM cell

Transport Layer 3-95

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

3.3 Connectionless * flow control
transport: UDP = connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

3.4 Principles of reliable
data transfer

Transport Layer 3-96

32

TCP congestion control: additive increase,
multiplicative decrease
« approach.increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
= additive increase: increase cwnd by 1 MSS every
RTT until loss detected
= multiplicative decrease: cut cwnd in half after
loss

24 Koyres

saw tooth
behavior: probing
for bandwidth

16 Kbyes

8 Kbytes

time

cwnd: congestion window size

Transport Layer 3-97

TCP Congestion Control: details

« sender limits transmission: How does sender
LastByteSent-LastByteAcked perceive congestion?
< cwnd « loss event = timeout or
+ roughly, 3 duplicate acks
cwnd + TCP sender reduces

rate = Bytes/sec

RTT

rate (cwnd) after loss
event

+ cwnd is dynamic, function of)
perceived network congestion ~ Three mechanisms:
= AIMD
= slow start
= conservative after
timeout events

Transport Layer 3-98

TCP Slow Start

+ when connection
begins, increase rate
exponentially until
first loss event:

initially cwnd = 1 MSS

double cwnd every RTT

done by incrementing
cwnd for every ACK
received

« summary: initial rate is
slow but ramps up
exponentially fast “E“e

Transport Layer 3-99

33

Refinement: inferring loss

« after 3 dup ACKs:
= cwnd is cut in half

= window then grows
linearly

< but after timeout event:
= cwnd instead set to 1
MSS;
= window then grows
exponentially

<« 3 dup ACKs indicates
network capable of
delivering some segments
+ timeout indicates a
“more alarming”
congestion scenario

Philosophy: —————————

= to a threshold, then
grows linearly

Transport Layer 3-100

Refinement

Q: when should the
exponential 124 .
increase switch to :
linear?

A: when cwnd gets to
1/2 of its value 4
before timeout. Y s~

Implementation:
+ variable ssthresh

+ on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

Transport Layer 3-101

Summary: TCP Conqeshon ConTr‘ol

duplicate ACK

new.

ound = G SS - (O d)
lupACKcount = 0

ownd = cwnd= W g nansmmncwscgmcm as allowed

dupACKco!

Femar now segment(s, as alowed

cund 2 ssthresh
A
D S
W
/ssifvesh = cwndz
55t resh = cwno duplicate ACK
abphCKapun S0

dupACKcount+

rewransmit missing segment

feransmit missing segment
timeout

dupACKcount = 0
dupACKcount==3 | | retransmit missing segment
 Sshvesh= cwna2
= ssihresh +3
rerransimt missig Seament

dupACKcount == 3
ssthresh= cwnd/2

cwnd = ssthresh + 3
relransmit missing Segment

cwnd = ssthresh
dupACKcount =0

duplicate ACK

Cwnd = cwnd + MSS.
transmit new segment(s), as allowed

Transport Layer 3-102

34

TCP throughput

« what's the average throughout of TCP as a
function of window size and RTT?
= ignore slow start

+ let W be the window size when loss occurs.
= when window is W, throughput is W/RTT

= just after loss, window drops to W/2,
throughput o W/2RTT.

= average throughout: .75 W/RTT

Transport Layer 3-103

TCP Futures: TCP over “long, fat pipes”

« example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

+ requires window size W = 83,333 in-flight
segments
+ throughput in terms of loss rate:
1.22-MSS
RTTYL

L = 210 Wow - a very small loss rate!
+ new versions of TCP for high-speed

Transport Layer 3-104

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Transport Layer 3-105

35

Why is TCP fair?

two competing sessions:
« additive increase gives slope of 1, as throughout increases
+ multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput m

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-106

Fairness (more)

Fairness and UDP
« multimedia apps often
do not use TCP
= do not want rate
throttled by congestion
control
+ instead use UDP:
= pump audio/video at
constant rate, tolerate
packet loss

Fairness and parallel TCP

connections
nothing prevents app from
opening parallel
connections between 2
hosts.
+ web browsers do this
example: link of rate R
supporting 9 connections;
*= new app asks for 1 TCP, gets
rate R/10
= nhew app asks for 11 TCPs,
getsR/2!

Transport Layer 3-107

Chapter 3: Summary

« principles behind transport

layer services:

= multiplexing,
demultiplexing

= reliable data transfer

= flow control
= congestion control
% instantiation and

implementation in the

Internet
= UDP
= TCP

Next:

« leaving the network
“edge” (application,
transport layers)

« into the network
“core”

Transport Layer 3-108

36

