COMPUTER wsmmon
NETWORKING

Chapter 3
Transport Layer

KUROSE - ROSS5

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).

They're in PowerPoint form so you can add, modify, and delete slides o
(including this one) and slide content to suit your needs. They obviously Compref' Nefwork/n_q.
represent a lot of work on our part. In return for use, we only ask the A TOp Down Appf'oach
following: th '

« If you use these slides (e.g., in a class) in substantially unaltered form, that 5 eleth. .

you mention their source (after all, we'd like people to use our book!) Jim KUI"OSC, Keith Ross
« If you post any slides in substantially unaltered form on a www site, that H _ H
you note that they are adapted from (or perhaps identical to) our slides, and AddlSOﬂ WeSley' Apl"ll
note our copyright of this material. 2009

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved
Transport Layer 3-1

Chapter 3: Transport Layer

Our goals:
+ understand principles = learn about transport

behind transport layer protocols in the
layer services: Internet:
= multiplexing/demultipl = UDP: connectionless
exing transport
= reliable data transfer » TCP: connection-oriented

transport
» TCP congestion control

* flow control
* congestion control

Transport Layer — 3-2

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
* segment structure
* reliable data transfer
* flow control
= connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

+ provide /ogical communication
between app processes
running on different hosts

+ transport protocols run in
end systems

* send side: breaks app
messages info segments,
passes to network layer

= rcv side: reassembles
segments into messages,
passes to app layer

> more than one transport
protocol available to apps

= Internet: TCP and UDP

application

trans~ort

N

[netwd
[physiciq

fransport

data link

e

Transport Layer 3-4

Transport vs. network layer

« network layer: logical
communication
between hosts

< transport layer: logical
communication
between processes

= relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

« processes = kids

< app messages = letters
in envelopes

+ hosts = houses

+ transport protocol =
Ann and Bill who demux
to in-house siblings

« network-layer protocol
= postal service

Transport Layer 3-5

Internet transport-layer protocols

+ reliable, in-order
delivery (TCP)
= congestion control
* flow control
= connection setup

+ unreliable, unordered
delivery: UDP
* no-frills extension of

"best-effort” IP

+ services not available:
= delay guarantees
* bandwidth guarantees

application
anspo @
networ!

|_data link

—=| physical

K 4

O
O network
PhY> N data link

M hysical
a2 @

Q |
&Y | networ |
_ Dé data link O
physical |
data linkeCe
physical

[T
\

A

U

«

=

network]
data link
physical I network a
SC vl | data link | [Fretwor
‘ - data link

‘\é \ R physical
28 g

Acation
po

e

Transport Layer 3-6

Chapter 3 outline

3.5 Connection-oriented
transport: TCP
* segment structure
* reliable data transfer
* flow control
= connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

Transport Layer 3-7

Multiplexing/demultiplexing

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Demultiplexing at rcv host:

delivering received segments
to correct socket

[=socket D = process
0 application 2
transport “Fransport transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

Transport Layer 3-8

How demultiplexing works

% host receives IP
datagrams

* each datagram has source
IP address, destination IP
address

* each datagram carries 1
transport-layer segment

* each segment has source,
destination port number
+ host uses IP addresses &
port numbers to direct
segment to appropriate
socket

«— 32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

% recall: create sockets with

host-local port numbers:

DatagramSocket mySocketl = new

DatagramSocket(12534);

DatagramSocket mySocket2 = new

DatagramSocket(12535);
« recall: when creating

datagram to send into UDP

socket, must specify
(dest IP address, dest port number)

« when host receives UDP
segment:
= checks destination port
number in segment
= directs UDP segment to
socket with that port
number
+ IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-10

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157

SP: 5775

client DP: 6428

IP: A

SP provides "return address”

server
IP: C IP:B

DP: 6428| Client

Transport Layer 3-11

Connection-oriented demux

+ TCP socket identified
by 4-tuple:
» source IP address
* source port number
» dest IP address
» dest port number

% recv host uses all four
values to direct
segment to appropriate
socket

« server host may support
many simultaneous TCP
sockets:

* each socket identified by
its own 4-tuple

+ web servers have
different sockets for
each connecting client

* non-persistent HTTP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux

(cont)

DOD
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
client | DP:80 server OP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-13

Connection-oriented demux:

Threaded Web Server

SP: 9157
client DP: 80
IP: A S-IP: A

D-IP:C

—
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157
server DP: 80 client
IP: C S-IP: B IP:B
D-IP:C

Transport Layer 3-14

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
* segment structure
* reliable data transfer
* flow control
= connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

<« “no frills," "bare bones"
Internet transport
protocol

%+ “best effort" service, UDP

segments may be:
* |ost

= delivered out of order
to app

% connectionless:

* no handshaking between
UDP sender, receiver

* each UDP segment
handled independently
of others

Why is there a UDP?
<+ ho connection

establishment (which can
add delay)

+ simple: no connection state
at sender, receiver

+ small segment header

% no congestion control: UDP
can blast away as fast as
desired

<+ Voice?

Transport Layer 3-16

UDP: more

< often used for
streaming multimedia

apps Length, in |Source port #| dest port #
« loss tolerant bytes of UDP [~ length checksum
o segment,
= rate sensitive including
+ other UDP uses header
= DNS
Application
" SNMP data
+ reliable transfer over (message)
UDP: add reliability at

application layer
* application-specific
error I"CCOVGI"Y!

«— 32 bits

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender: Receiver:

» treat segment contents
as sequence of 16-bit
integers

» checksum: addition (1's
complement sum) of
segment contents

+ sender puts checksum

value into UDP checksum
field

+ compute checksum of

received segment

+ check if computed checksum

equals checksum field value:
* NO - error detected

= YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet Checksum Example

+ Note: when adding numbers, a carryout from
the most significant bit needs to be added

to the result
« Example: add two 16-bit integers

1110011001 100110
110101010101 0101
wraparound@lOlllOlllOll1011
sum 1011101110111 100
checksum 0100010001 00O0OO011
Transport Layer 3-19
Chapter 3 outline
3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP
3.2 Multiplexing and * sSegment structure
demultiplexing * reliable data transfer
3.3 Connectionless = flow control
transport: UDP = connection management

3.4 Principles of reliable 3.6 Principles of

data transfer

congestion control

3.7 TCP congestion control

Transport Layer 3-20

10

Principles of Reliable data transfer

<« important in app., fransport, link layers
+ top-10 list of important networking topics!

c

o

oo

L 6‘ |sena|ng| |recei\.fer I
8_ S rocess process

O |

E (Jreliable channel
22

C

o o]

(a) provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

« important in app., transport, link layers
+ top-10 list of important networking topics!

c
o
oo
L 6‘ |sena|ng| |recei\.fer I
8_ - rocess process
O !
E (Jreliable channel
22
C
S o]
L-| iunreliable chcmr‘w;rl)iI
(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

11

Principles of Reliable data transfer

<« important in app., fransport, link layers
+ top-10 list of important networking topics!

c
o
oo
9 g sending receiver
8_— rocess process
e I=a
dt da i
= (Jreliable channel ratgsendl detgl[deliver data()
8 5 reliable data reliable data
B fransfer protocol tfransfer protocol
5 O (sending side) (receiving side)

udt’._send()i ‘rdt_.rcv[]

L-| iunreliable chcmr‘w;rl)iI

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt_send(): called from above, deliver_data(): called by

(e.g., by app.). Passed data to rdt to deliver data to upper

deliver to receiver upper layer

rdt_send() Tdel iver dataf()

send |[eliable data reliable data receive
id fransfer profocol transfer protocol id
Side |sending side) (receiving side) side
udt_send()Jt [packet | [packet | Irdt_rcv 0
L| Junreliable channel)J
udt_send(): called by rdt, rdt_rcv(): called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-24

12

Reliable data transfer: getting started

we'll:
<« incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
« consider only unidirectional data transfer
= but control info will flow on both directions!
+ use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 3-25

Rdt1.0: reliable transfer over a reliable channel

« underlying channel perfectly reliable
= no bit errors
= no loss of packets
+ separate FSMs for sender, receiver:
= sender sends data into underlying channel
= receiver read data from underlying channel

“4ANait for
call from
below

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

“%/Wait for
call from
above

rdt_send(data)

packet = make_pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-26

13

Rdt2.0: channel with bit errors

« underlying channel may flip bits in packet
= checksum to detect bit errors
% the question: how to recover from errors:

How do humans recover from "errors”
auring conversation?

Transport Layer 3-27

Rdt2.0: channel with bit errors

<« underlying channel may flip bits in packet
= checksum to detect bit errors
+ the question: how to recover from errors:

» acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

» negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

= sender retfransmits pkt on receipt of NAK
« new mechanisms in rdt2.0 (beyond rdt1.0):
= error detection
* receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-28

14

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)

rdt_rcv(revpkt) &&
iSNAK(rcvpkt)

Wait for
call from
above

[rdt_rcv(revpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt) Sa
A

Wait for
call from

sender below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

—_ rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

15

rdt2.0: error scenario

rdt_send(data)

Wait for
call from

rdt_rcv(revpkt) && iSACK(rcvpkt)

snkpkt = make_pkt(data, checksum)
d(snd

A

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

« sender doesn't know what
happened at receiver!

« can't just retransmit:
possible duplicate

Handling duplicates:

<+ sender retransmits current
pkt if ACK/NAK garbled

+ sender adds seguence
number to each pkt

% receiver discards (doesn't
deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Transport Layer 3-32

16

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)

rdt_rcv(rcvpkt)
&& isACK(rcvpkt)

&& notcorrupt(rcvpkt)

&& iSACK(rcvpkt)
* A
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSNAK(revpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) ‘\

\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

17

rdt2.1: discussion

Sender: Receiver:
+ seq # added to pkt + must check if received
+ two seq. #'s (0,1) will packet is duplicate
suffice. Why? * state indicates whether
. . 0 or 1is expected pkt
+ must check if received seq #
AC.K/ NAK corrupted + hote: receiver can not
+ twice as many states know if its last
* state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1 seq. # af sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

+ same functionality as rdt2.1, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

= receiver must explicitly include seq # of pkt being ACKed

« duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

18

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

~ Udt&nd—pkt)\A rdt_rcv(revpkt) &&
N . (corrupt(rcvpkt) ||
i Wait for .
CZ}{%IJ%% ACK iSACK(rcvpkt,1))
above 0 udt_send(sndpkt)
sender FSM
» fragment rdt_rcv(rcvpkt)

rdt_rcv(rcvpkt) &&

(corrupt(revpkt) || S
has_seq1(rcvpkt)) W";‘" for\ peceiver FSM
0 from
udt_send(sndpkt) below fragment
v

&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

A

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

Transport Layer 3-37

rd+3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

» checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

- retransmits if no ACK
received in this time
« if pkt (or ACK) just delayed
(not lost):
= retransmission will be
duplicate, but use of seq.
#'s already handles this
= receiver must specify seq
of pkt being ACKed

+ requires countdown timer

Transport Layer 3-38

19

rdt3.0 sender

rdt_send(data)

\

\ udt_send(sndpkt)

rdt_rcv(rcvpkt) \ start_timer

A

Wait for
call Ofrom
above
rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C

start_timer (/

rdt_send(data)

sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

rdt_rcv(rcvpkt) &&

iSACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

udt_send(sndpkt)
start_timer

sndpkt = make_pkt(1, data, checksum)

Transport Layer 3-39

rdt3.0 in action

sender receiver
pkf -
send pki0 J rcv pki0

Ak send ACKO
rcv ACKO /

send pkil \k\‘
o rev pktl
ACK 4 send ACK1
evACK]

send pkt0 ki g
rcy pkio
send ACKO

(a) operation with no loss

sender receiver
pkt A
send pki0 - rcv pki0
ACK send ACKO

rcv ACKO

send pkil okt
\ (loss)

fimeout okt
resend pkil X’
rcv pkil
ACK send ACK]
revACK]
send pki0
~1 rcv pki0
ACK send ACKO

(b) lost packet

Transport Layer 3-40

20

rdt3.0 in action

sender receiver sender receiver
Dkt okt A
Sena P T, rovpdo send pki0 T, ovpko
ACK send ACKO ACK send ACKO
rov ACKOD rev ACKD
send pktl Pk send pktl
ey pktl rev pktl
ACK, . send ACKI] send ACK]
(loss) X
fimeout
fimeout pkt resend pkil
resend pkil \‘rcv oki1 v pkil
([detect duplicate) revACK] (detect duplicate)
. ¥ send ACKI send pki0 send ACK1
[CV,
rcv pki0
send pki0 send ACKO
rev pkio ACK 0
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-41

Performance of rdt3.0

+ rdt3.0 works, but performance stinks
+ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packeft:

L 8000bits)
=—=————"=8microseconds

trans R - 109 bpS

= U : utilization - fraction of time sender busy sending

sender®

= L/R = .008 = 0.00027
sender RTT+L/R 30.008

= if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link
= network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fgo------------ommeme e
last packet bit transmitted, t=L /R

first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send nexi
packet, t=RTT +L/R |

L/R .008

der™ = = 0.00027
sender RTT+L/R 30008

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
* range of sequence numbers must be increased
= buffering at sender and/or receiver

data packet—s

+— ACK packets

(a) a stop-and-wail prolecol in operalion ib) a pipelined prolocol in eperalion

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

22

Pipelining: increased utilization

sender

first packet bit transmitted, t = 0
last bit transmitted, t = L / R

RTT

ACK arrives, send nextl
packet, t=RTT +L/R |

3*L/R

receiver

— first packet bit arrives

—last packet bit arrives, send ACK

—last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

Increase utilization
' / by a factor of 3!

.024

Sender‘: RTT+ L / R = 30.008

= 0.0008

Transport Layer 3-45

Pipelined Protocols

Go-back-N: big picture:

Selective Repeat: big pic

« sender can have up to
N unacked packets in
pipeline

% rcvr only sends
cumulative acks

* doesn't ack packet if
there's a gap

+ sender has timer for
oldest unacked packet

* if timer expires,
retransmit all unack'ed
packets

« sender can have up to
N unack'ed packets in
pipeline

« rcvr sends /ndividual
ack for each packet

< sender maintains timer
for each unacked
packet

= when timer expires,
retransmit only
unack'ed packet

Transport Layer 3-46

23

Go-Back-N

Sender:
« k-bit seq # in pkt header
+ “window" of up to N, consecutive unack'ed pkts allowed

!

send_base nextsegnum already Usable, nof
h 4 v ack'ed yet sent
(1 HINIIOINID | ot] otusome
£ window sze—% B
N

+ ACK(n): ACKs all pkts up to, including seq # n - “"cumulative ACK"
* may receive duplicate ACKs (see receiver)

+ timer for each in-flight pkt

« timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextsegnum)
start_timer
nextseqnum-++
}
A else
—_— refuse_data(data)

""""" . timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) G udt_send(sndpkt[base+1])

&& corrupt(rcvpkt;
bl(revpid) Q udt_send(sndpkt[nextsegnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 3-48

24

GBN:: receiver extended FSM

default
udt_send(sndpkt)

rdt_rcv(rcvpkt)

-~ C } && notcurrupt(rcvpkt)

A Te~a - && hassegnum(rcvpkt,expectedseqnum)
expectedsegnum=1 *Qextract(rcvpkt,data)

sndpkt = deliver_data(data)
make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
* may generate duplicate ACKs
* need only remember expectedseqnum
<« out-of-order pkit:
» discard (don't buffer) -> no receiver buffering!
= Re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN in sender receiver

Ti sendpkiO=—~vu ___, ki0
rcv
C(C_m send pktl sené’ ACKO
» send pki2 \\(Igss) ';?gﬁghcm
send pkt3
(waif) rev pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pkid, discard
sr(e:r:dAgk% \’ send ACKI
kts5, di d
- okt2 timeout sond ACKT -

send pkf2 \‘b/

send pkf3 \ rev pki2, deliver

send pkf4 send ACK?2

send pktb rcv pkt3, deliver
\ send ACK3

Transport Layer 3-50

25

Selective Repeat

« receiver /ndividually acknowledges all correctly
received pkts

» buffers pkts, as needed, for eventual in-order delivery
to upper layer

« sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt
« sender window
» N consecutive seq #'s
= again limits seq #s of sent, unACK'ed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base nexfsegnum dready Usable. not
ack’ed yet sent
[sent, not
N TACIUTOI | e] o
window size —4
N
(a) sender view of sequence numbers
out of order
acceptable
(buffered) but vy "
dlready ack’ed (within window)
[IDTOD0VEERLIDILEEEINIROY Porssaager roree
yet received

L window size—2
N
rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-52

26

Selective repeat

—sender
data from above :
+ if next available seq # in
window, send pkt
timeout(n):
« resend pkt n, restart timer
AC K(n) in [sendbase,sendbase+N]:
« mark pkt n as received

R

« if n smallest unACKed pkt,
advance window base to
next unACKed seq #

— receiver

ka nin [revbase, revbase+N-1]

+ send ACK(n)

% out-of-order: buffer

% in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

ka N iN [rcvbase-N revbase-1]

« ACK(n)

otherwise:

% ighore

Transport Layer 3-53

Selective repeat in action

pktl =ent

D123]45867863 —j__—ﬁ___ﬁ__—*pktﬂ rovd., delivered. ACKD sent

pktl =ent
01234567849

pktZ =ent

—lo1z23ese 789 X
(loss)
pktd =ent, window full

[br23as56739

ACKD rowd, pltd sent
O[1 2 34|56 7829

ACK]l rowd, plth =sent

01|23 46567829

— pkt2 TIHEOUT, pkt2 resent

01]2 34567829

ACK3 rovd. nothing sent

01|23 456 7889

0123 456789
pktl rowd. delivered. ACKL sent

01|23 45fe 789

pktd rowvd, buffered., ACK3 sent

012 3 45| 7849

pktd rovd., buf fered, ACK4 =ent
01[2 3456789

pkts rovd., buf fered. ACKS =ent

01|2 3456789

pkt2 rovd, pht2.pktd, pktd, pktt
delivered, ACKZ sent

p12345f7583)]

sport Layer 3-54

27

Selective repeat:

receiver window

(after receipt)

sender window

(after receipt)

dilemma

Example:
+ seq#s:.0,1,2,3
< window size=3

< receiver sees ho
difference in two
scenarios!

+ incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

012301
| | CKOoMmz
[f1zson 0123012

012301

0125012

timeout
retransmit |:;kti.‘Jkt

301 ———p receive packet

with seq number O

(a)

receiver window

(after receipt)

sender window

(after receipt)

012|301 Cmoojz

0 12301 2

012301 0123012
ACK2

olr 2301
0 1[Z50h 4

receive packet
with seq number O

(b)

Transport Layer 3-55

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
* reliable data transfer
* flow control
= connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-56

28

TCPI Over'view RFCs: 793, 1122, 1323, 2018, 2581

X3

4

9
”Q

steam.

point-to-point:
= one sender, one receiver
reliable, in-order byte

o,
o

full duplex data:

= bi-directional data flow
in same connection

* MSS: maximum segment

size

* no "message boundaries”

9
o

pipelined:

» TCP congestion and flow
control set window size

send & receive buffers

X3

¢

application
writes data
L

TCP
send buffer

socket
door

®,
o

g

K3
"o

application
reads data

connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

flow controlled:
= sender will not

J I W _ _ socket
o overwhelm receiver
receive buffer
®)

() [segment] —»

Transport Layer 3-57

TCP segment structure

URG: urgent data

source port # | dest port #

32 bits

(generally not used)™_|
ACK: ACK #

sequence humber

valid

———acknowledgement number

PSH: push data now
(generally not used)—|

head] not EIKI? RISF| Receive window

C

sum Urg data pnter

RST, SYN, FIN:— |
connection estab

Opti

s (variable length)

(setup, teardown
commands)

Internet
checksum
(as in UDP)

application
data
(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

Transport Layer 3-58

29

TCP seq. #'s and ACKs

Seq. #'s:
= byte stream
“number” of first
byte in segment's
data
ACKs:
= seq # of next byte
expected from
other side
= cumulative ACK
Q: how receiver handles
out-of-order segments
= A: TCP spec doesn't
say, - up to
implementor

User Se
9=42
types : ACK=7g
p W
host ACKs
_ receipt of
qaa=5— 'C,, echoes
\Q:A«?h k'C
_19,AC back 'C
sed™
host ACKs
receipt Sen
of echoed 2943, ACk=gg
c \
time
simple telnet scenario l

Transport Layer 3-59

TCP Round Trip Time and Timeout

Q: how to set TCP

timeout value?

<« longer than RTT
* but RTT varies

% too short:

premature timeout

" unnecessary
retransmissions

+ too long: slow

reaction tfo segment

loss

Q: how to estimate RTT?

- SampleRTT: measured time from
segment transmission until ACK
receipt

* ignore retransmissions

- SampleRTT will vary, want
estimated RTT “smoother"”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-60

30

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
« Exponential weighted moving average

+ influence of past sample decreases exponentially fast
+ typical value: a =0.125

Transport Layer 3-61

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—&— SampleRTT —#— RTT

Transport Layer 3-62

31

TCP Round Trip Time and Timeout

Setting the timeout

- EstimatedRTT plus “"safety margin”
* large variation in EstimatedRTT -> larger safety margin
« first estimate of how much SampleRTT deviates from

EstimatedRTT:

DevRTT = (1-B)*DevRTT +

B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Then set timeout interval:

Timeoutinterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-63

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
* reliable data transfer
* flow control
= connection management
3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-64

32

TCP reliable data transfer

% TCP creates rdt
service on top of IP's
unreliable service

< pipelined segments
<« cumulative acks

« TCP uses single
retransmission timer

< retransmissions are
triggered by:
* fimeout events
* duplicate acks

< initially consider
simplified TCP sender:
= ignore duplicate acks

= ignore flow control,
congestion control

Transport Layer 3-65

TCP sender events:

data rcvd from app:

« Create segment with
seq #

< seq # is byte-stream
number of first data
byte in segment

+ start timer if not
already running (think
of timer as for oldest
unacked segment)

®,

<+ expiration interval:
TimeOutlnterval

timeout:

< retransmit segment
that caused timeout

< restart timer

Ack revd:

« If acknowledges
previously unacked
segments

= update what is known to
be acked

* start timer if there are
outstanding segments

Transport Layer 3-66

33

NextSegqNum = InitialSegNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above

if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSegqNum + length(data)

event: timer timeout

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y

start timer

}

} /* end of loop forever */

retransmit not-yet-acknowledged segment with

create TCP segment with sequence number NextSegNum

if (there are currently not-yet-acknowledged segments)

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
acked byte
Example:

+ SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-67

TCP: retransmission scenarios

xI
o
0
—+
>

Host B@

Seg=
‘ w
-
_100
= X
l loss
% o
SendBase
=120
p\C\‘:loo
SendB
e:nlogse SendBase
=120
L
time

lost ACK scenario

92 TimeouT—»I

92 fimeout—sy+— Seq

eq=

4

time

@ Host A

Seg-
=9,
2, 8 bytes data
=10,
0,20 bytes dat
a

Seq

=9,
2,8 byteg data

Host B@

A0
RS 2y

premature timeout

Transport Layer 3-68

34

TCP retransmission scenarios (more)
18 piost 4 Host 8 | [l

Seq:

9,
2, 8 by[es data
=10
Seg= oK
95100, 29 Ps d
atg

X
loss
SendBase ,P\c\k/

=120

timeout

Time v
Cumulative ACK scenario

Transport Layer 3-69

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action
Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,

expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70

Fast Retransmit

+ time-out period often « if sender receives 3

relatively long:
* long delay before
resending lost packet
« detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-to-
back

» if segment is lost, there
will likely be many
duplicate ACKs.

ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

» fast refransmit: resend
segment before timer
expires

Transport Layer 3-71

Host A

timeout

time

I‘esend
2nd s
C9meny

Figure 3.37 Resending a segment after triple duplicate ACK

Transport Layer 3-72

36

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y

}

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-73

Chapter 3 outline

3.1 Transport-layer « 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and = segment structure
demultiplexing = reliable data transfer

3.3 Connectionless = flow COH}‘rol
transport: UDP * connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

3.4 Principles of reliable
data transfer

Transport Layer 3-74

37

TCP Flow Control

% receive side of TCP
connection has a
receive buffer:

f— RevWindow —

data from
ny

< app process may be

f

sender won't overflow

1-

low control

receiver’'s buffer by
ransmitting oo much,
too fast

application

. »
process

i .

I, V/A

i

b—— RevBuffr ———#

slow at reading from

buffer

+ speed-matching

service: matching the
send rate to the
receiving app's drain
rate

Transport Layer 3-75

TCP Flow control: how it works

+|— RevWindow —4-

data from
Ir

segments)

o

RcvWindow

LastByteRead]

o 7
//7 7 7%
i
f——— RevBuffer ———+

application
process

(suppose TCP receiver
discards out-of-order

+ spare room in buffer

RcvBuffer-[LastByteRcvd -

rcvr advertises spare
room by including value
of RevWindow in
segments

sender limits unACKed
data to RecvWindow

= guarantees receive
buffer doesn't overflow

Transport Layer 3-76

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
* segment structure
* reliable data transfer
* flow control
= connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-77

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

- initialize TCP variables:
» seq. #s
* buffers, flow control
info (e.g. RevWindow)
» client: connection initiator

Socket clientSocket = new
Socket(*'hostname",""port

number');

+ server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

» specifies initial seq #
* no data
Step 2: server host receives
SYN, replies with SYNACK
segment
= server allocates buffers
» specifies server initial
seq. #
Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data

Transport Layer 3-78

39

TCP Connection Management (cont.)

Closing a connection:

clien'r server@
. close
client closes socket:

Fin
clientSocket.close(); \

Step 1: client end system
sends TCP FIN control

CcK
£ close
N
segment to server
K

Step 2: server receives
FIN, replies with ACK.

Closes connection, sends
FIN.

d wait

Q. time

close

Transport Layer 3-79

TCP Connection Management (cont.)

Step 3: client receives FIN, client server@
replies with ACK. closing

* Enters “timed wait" - \‘
will respond with ACK

to received FINs

K
/ closing
. N
Step 4: server, receives /
ACK. Connection closed. -
k

Note: with small

modification, can handle
simultaneous FINs.

d wait

closed

Q. time

close

Transport Layer 3-80

40

TCP Connection Management (cont)

- o| CLOSED |—_ ___ell-ngg;IIuﬂon_
/ ‘\I".*rrl =)
TIME_WaIT SYN_SENT
TCP server
; / client application “feCYde
s B B e
TCP client wironnd
lifecycle L I
= [e]
. 1 . k4 .
CLOSE_WAIT sm_:ncvn
Transport Layer 3-81
Chapter 3 outline
3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP
3.2 Multiplexing and * segment structure
demultiplexing = reliable data transfer

3.3 Connectionless = flow control
transport: UDP * connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

3.4 Principles of reliable
data transfer

Transport Layer 3-82

41

Principles of Congestion Control

Congestion:
<+ informally: "too many sources sending too much
data too fast for network to handle"

« different from flow control!

+ manifestations:
= |ost packets (buffer overflow at routers)

= |ong delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 3-83

Causes/costs of congestion: scenario 1

Host A 2
vout

O km : original data
» two senders, two W S

receivers
Host B unlimit_ed shared
< ohe router, output ik buffers

infinite buffers
< no retransmission

+ large delays

Cr2 —

- '
- 3 when congested
o i .
< % maximum
. achievable
C/2 cP2 throughput
A’in ?\'in

Transport Layer 3-84

42

Causes/costs of congestion: scenario 2

<« one router, finite buffers

<« sender retransmission of timed-out packet
= application-layer input = application-layer output: A, = A,
= transport-layer input includes retransmissions : 1, =\,

@ — Ay, : original data

— A\'j,: original data, plus out

retransmitted data

Host B

Host A

finite shared output
link buffers
Transport Layer 3-85

Congestion scenario 2a: ideal case

<+ sender sends
only when router
buffers available

BB— A\, : original data
copy Bl @+ j— \';,: original data, plus
retransmitted data

I Mout

free buffer space!

finite shared output
link buffers
Transport Layer 3-86

43

Congestion scenario 2b: known loss

« packets may get
dropped at router due
to full buffers

= sometimes lost

+ sender only resends if
packet Anown to be lost
(admittedly idealized)

3

L\, : original data

copy Bl @<4—)" - original data, plus A Ao

retransmitted data

Host B
®

no buffer space!

;

Host A

Transport Layer 3-87

Congestion scenario 2b: known loss

« packets may get
dropped at router due] G :
to full buffers ~

* sometimes not lost

+ sender only resends if
packet Anown to be lost ;
(admittedly idealized) A R

when sending at
R/2, some packets
are retransmissions
but asymptotic
goodput is still R/2
(why?)

7“0ut

) — A, : original data

I Mout

— A", original data, plus
retransmitted data

free buffer space!

Transport Layer 3-88

44

Congestion scenario 2¢: duplicates

« packets may get
dropped at router due A I P
to full buffers =

« sender times out
prematurely, sending
two copies, both of 1
which are delivered % Ri2

P
|{§(s ;p
S DAy — }\’in A
=timeout = [l T A—— Aoyt
e I in
Host B
®

when sending at
R/2, some packets
are retransmissions
including duplicated
that are delivered!

kout

free buffer space!
Host A

Transport Layer 3-89

Congestion scenario 2c: duplicates

+ packets may get
dropped at router due] S
to full buffers -

» sender times out

prematurely, sending
two copies, both of ;
which are delivered A Ri2

Ry

when sending at
R/2, some packets
are retransmissions
including duplicated
that are delivered!

Ry

"costs" of congestion:

« more work (retrans) for given "goodput”

+ unneeded retransmissions: link carries multiple copies of pkt
= decreasing goodput

Transport Layer 3-90

Causes/costs of congestion: scenario 3

<« four senders
« multihop paths
» timeout/retransmit

Q: what happens as kin
and k;nincr'ease ?

Host A

_), - original data Hout

[«J—). original data, plus '

retransmitted data l

finite shared output
lipk buffers

Host B

R
[2]

Transport Layer 3-91

Causes/costs of congestion: scenario 3

C/2-

Aou’r

KI
in
another "cost” of congestion:

« when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-92

46

Approaches towards congestion control

Two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:

+ no explicit feedback from <« routers provide feedback
network to end systems

+ congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

= approach taken by TCP ATM)

= explicit rate sender
should send at

Transport Layer 3-93

Case study: ATM ABR congestion control

ABR: available bit rate: RM (resource management)
+ “elastic service" cells:
+ if sender's path + sent by sender, interspersed
"underloaded”: with data cells
= sender should use + bits in RM cell set by switches
available bandwidth ("network-assisted”)
« if sender’s path = NI bit: no increase in rate
congested: (mild congestion)
= sender throttled to = CI bit: congestion
minimum guaranteed indication
rate + RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-94

47

Case study: ATM ABR congestion control

I RM cells

source D data cells destination
. |

Switch Switch

= 1T Sps OO0 50—
i i1 I

+ two-byte ER (explicit rate) field in RM cell

= congested switch may lower ER value in cell

= sender’ send rate thus maximum supportable rate on path
« EFCI bit in data cells: set to 1 in congested switch

* if data cell preceding RM cell has EFCT set, sender sets CI
bit in returned RM cell

Transport Layer 3-95

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and » segment structure
demultiplexing * reliable data transfer

3.3 Connectionless = flow control
transport: UDP * connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

3.4 Principles of reliable
data transfer

Transport Layer 3-96

48

TCP congestion control: additive increase,

multiplicative decrease

< approach. increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

» additive increase: increase cwnd by 1 MSS every

RTT until loss detected

» multiplicative decrease: cut cwnd in half after

loss

24 Kbytes —

saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —{

cwnd: congestion window size

time

Transport Layer 3-97

TCP Congestion Control: details

« sender limits transmission:
LastByteSent-LastByteAcked
< cwnd

+ roughly,

How does sender

_ cwnd
rate = RTT Bytes/sec

< cwnd is dynamic, function of
perceived network congestion

perceive congestion?

%+ loss event = timeout or
3 duplicate acks

+ TCP sender reduces
rate (cwnd) after loss
event

three mechanisms:

= AIMD
= slow start

= conservative after
timeout events

Transport Layer 3-98

49

TCP Slow Start

« when connection
begins, increase rate
exponentially until
first loss event:

= initially cwnd = 1 MSS

= double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

« summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-99

Refinement: inferring loss

+ after 3 dup ACKs:
= cwnd is cut in half

* window then grows
linearly

« but after timeout event:

= cwnd instead set to 1
MSS;

= window then grows
exponentially

* 10 a threshold, then
grows linearly

—— Philosophy:

« 3 dup ACKs indicates
network capable of
delivering some segments
<« timeout indicates a
"more alarming”
congestion scenario

Transport Layer 3-100

50

Refinement

Q: when should the 14+
exponential 12+
increase switch to é 10+
linear? gg g|ssthresh

A:when cwnd gets to £ § &

1/2 of its value g< 4
before timeout. Y
01—

TCP Reno

ssthresh

Implementation:
< variable ssthresh

<+ on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

T T 1T 1T T 1T T T
01 2 3 4 5 6 7 8 9101112131415

Transmission round

Transport Layer 3-101

Summary: TCP Congestion Con‘rrol

T e

= New ’/_
duplicate ACK éhdv/{{ =
dupACKcount++ new ACK

cwnd = cwnd+MSS
dupACKcount =0

New

new ACF E"‘d\f

cwnd = cwnd + MSS » (MSS/cwnd)
dupACKcount =0

transmit new segment(s) as allowed

»

lransmn new segment(s), as allowed
cwnd 1MSsS
ssthresh = 64 KB cwnd > ssthresh ssthresh
dupACKeount=0
. timeout
R\ { Tssthresh = cwnd/2~
& cwnd =1 MSS

(e '{ j _ timeout ™ (lmeout dupACKcount = 0

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount = 0
retransmit missing segment

L

.
timeout'@]

ssthresh = cwnd/2
cwnd =1
dupACKcount =0

dupACKcount == 3 retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

retransmit missing segment

‘)duplcate ACK

dupACKcount++

R
New

=, A -
New ACK

cwnd = ssthresh =
dupACKcount =0 M 8
ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS

transmit new segment(s), as allowed

Transport Layer 3-102

51

TCP throughput

« what's the average throughout of TCP as a
function of window size and RTT?
= ighore slow start

+ let W be the window size when loss occurs.
» when window is W, throughput is W/RTT

= just after loss, window drops to W/2,
throughput to W/2RTT.

= average throughout: .75 W/RTT

Transport Layer 3-103

TCP Futures: TCP over "“long, fat pipes"

« example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

+ requires window size W = 83,333 in-flight
segments

<+ throughput in terms of loss rate:

1.22-MSS

RTTA/L

L = 2:10-19 Wow - a very small loss rate!
<« new versions of TCP for high-speed

Transport Layer 3-104

52

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Transport Layer 3-105

Why is TCP fair?

two competing sessions:
+ additive increase gives slope of 1, as throughout increases
« multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-106

53

Fairness (more)

Fairness and UDP Fairness and parallel TCP

+ multimedia apps often conhnhections
do not use TCP + nothing prevents app from

= do not want rate opening ,pam“el
throttled by congestion connections between 2

control hosts.
+ instead use UDP: + web browsers do this
" E”r’:‘serg:f:%{r ‘2d$°| ar = example: link of rate R
0 , to . AN
packet loss supporting 9 connections;
= new app asks for 1 TCP, gets
rate R/10
= new app asks for 11 TCPs,
gets R/2|

Transport Layer 3-107

Chapter 3: Summary

« principles behind transport
layer services:

* multiplexing,
demultiplexing

* reliable data transfer

» flow control Next:
= congestion control + leaving the network
+ instantiation and “edge” (application,
implementation in the transport layers)
Internet + into the network
= UDP “core"
= TCP

Transport Layer 3-108

54

