
Chapter 2
Application Layer

Computer Networking:
A Top Down Approach,
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)

If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved

Application 2-1

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-2

Chapter 2: Application Layer
Our goals:

conceptual,
implementation
aspects of network
application protocols

transport-layer
service models
client-server
paradigm
peer-to-peer
paradigm

learn about protocols
by examining popular
application-level
protocols

HTTP
FTP
SMTP / POP3 / IMAP
DNS

programming network
applications

socket API

Application 2-3

Some network apps

e-mail
web
instant messaging
remote login
P2P file sharing
multi-user network
games
streaming stored video
(YouTube)

voice over IP
real-time video
conferencing
cloud computing
…
…

Application 2-4

Creating a network app
write programs that

run on (different) end
systems
communicate over network
e.g., web server software
communicates with browser
software

No need to write software
for network-core devices

network-core devices do
not run user applications
applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application 2-5

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-6

Application architectures

client-server
peer-to-peer (P2P)
hybrid of client-server and P2P

Application 2-7

Client-server architecture
server:

always-on host
permanent IP address
server farms for
scaling

clients:
communicate with server
may be intermittently
connected
may have dynamic IP
addresses
do not communicate
directly with each other

client/server

Application 2-8

Pure P2P architecture

no always-on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

highly scalable but
difficult to manage

peer-peer

Application 2-9

Hybrid of client-server and P2P
Skype

voice-over-IP P2P application
centralized server: finding address of remote
party:
client-client connection: direct (not through
server)

Instant messaging
chatting between two users is P2P
centralized service: client presence
detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

Application 2-10

Processes communicating

process: program running
within a host.
within same host, two
processes communicate
using inter-process
communication (defined
by OS).
processes in different
hosts communicate by
exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be
contacted

aside: applications with
P2P architectures have
client processes &
server processes

Application 2-11

Sockets
process sends/receives
messages to/from its
socket
socket analogous to door

sending process shoves
message out door
sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

Application 2-12

Addressing processes
to receive messages,
process must have
identifier
host device has unique
32-bit IP address
Q: does IP address of
host on which process
runs suffice for
identifying the process?

Application 2-13

Addressing processes
to receive messages,
process must have
identifier
host device has unique
32-bit IP address
Q: does IP address of
host on which process
runs suffice for
identifying the process?

A: No, many
processes can be
running on same host

identifier includes both
IP address and port
numbers associated with
process on host.
example port numbers:

HTTP server: 80
Mail server: 25

to send HTTP message
to gaia.cs.umass.edu web
server:

IP address: 128.119.245.12
Port number: 80

more shortly…

Application 2-14

App-layer protocol defines

types of messages
exchanged,

e.g., request, response
message syntax:

what fields in messages &
how fields are delineated

message semantics
meaning of information in
fields

rules for when and how
processes send &
respond to messages

public-domain protocols:
defined in RFCs
allows for
interoperability
e.g., HTTP, SMTP

proprietary protocols:
e.g., Skype

Application 2-15

What transport service does an app need?

Data loss
some apps (e.g., audio) can
tolerate some loss
other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing
some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

Throughput
some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”
other apps (“elastic apps”)
make use of whatever
throughput they get

Security
encryption, data integrity,
…

Application 2-16

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Application 2-17

Internet transport protocols services

TCP service:
connection-oriented: setup
required between client and
server processes
reliable transport between
sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle
sender when network
overloaded
does not provide: timing,
minimum throughput
guarantees, security

UDP service:
unreliable data transfer
between sending and
receiving process
does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

Application 2-18

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

Application 2-19

Chapter 2: Application layer

2.1 Principles of network
applications

app architectures
app requirements

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-20

Web and HTTP

First, a review…
web page consists of objects
object can be HTML file, JPEG image, Java applet,
audio file,…
web page consists of base HTML-file which
includes several referenced objects
each object is addressable by a URL
example URL:
www.someschool.edu/someDept/pic.gif

host name path name

Application 2-21

HTTP overview

HTTP: hypertext
transfer protocol
Web’s application layer
protocol
client/server model

client: browser that
requests, receives,
“displays” Web objects
server: Web server
sends objects in
response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

Application 2-22

HTTP overview (continued)

Uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

HTTP is “stateless”
server maintains no
information about
past client requests

protocols that maintain
“state” are complex!
past history (state) must
be maintained
if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

Application 2-23

HTTP connections

non-persistent HTTP
at most one object
sent over TCP
connection.

persistent HTTP
multiple objects can
be sent over single
TCP connection
between client, server.

Application 2-24

Nonpersistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

Application 2-25

www.someSchool.edu/someDepartment/home.index

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application 2-26

Non-Persistent HTTP: Response time

definition of RTT: time for
a small packet to travel
from client to server
and back.

response time:
one RTT to initiate TCP
connection
one RTT for HTTP
request and first few
bytes of HTTP response
to return
file transmission time

total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application 2-27

Persistent HTTP

non-persistent HTTP issues:
requires 2 RTTs per object
OS overhead for each TCP
connection
browsers often open parallel
TCP connections to fetch
referenced objects

persistent HTTP
server leaves connection
open after sending
response
subsequent HTTP messages
between same
client/server sent over
open connection
client sends requests as
soon as it encounters a
referenced object
as little as one RTT for all
the referenced objects

Application 2-28

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

Application 2-29

<initial line, different for request vs. response>
Header1: value1
Header2: value2
Header3: value3

<optional message body goes here, like file contents or query
data;

it can be many lines long, or even binary data $&*%@!^$@>

HTTP request

Initial response line
GET /path/to/file/index.html HTTP/1.0

The header name is not case-sensitive (the value
maybe).
Any number od spaces or tabs bertween : and value
Header lines beginning with space or tab are actually
part of the previous header line folded into multiple
lines for easy reading.
HTTP 1.0 defines 16 headers (non is required), while
HTTP 1.1 defines 46 and one is required (Host:)

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

Application 2-31

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

HTTP request message: general format

Application 2-32

request
line

header
lines

body

HTTP 1.0 Examples
http://www.somehost.com/path/file.html

GET /path/file.html HTTP/1.0
From: someuser@jmarshall.com
User-Agent: HTTPTool/1.0
[blank line here]

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>Happy New Millennium!</h1>
(more file contents)

.

.

.
</body>
</html>

Uploading form input
POST method:

web page often includes
form input

input is uploaded to
server in entity body

URL method:
uses GET method
input is uploaded in
URL field of request
line: www.somesite.com/animalsearch?monkeys&banana

Application 2-34

Method types

HTTP/1.0
GET
POST
HEAD

asks server to leave
requested object out of
response

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity
body to path specified
in URL field

DELETE
deletes file specified in
the URL field

Application 2-35

HTTP response message
status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

Application 2-36

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

HTTP response status codes

200 OK
request succeeded, requested object later in this msg

301 Moved Permanently
requested object moved, new location specified later in this
msg (Location:)

400 Bad Request
request msg not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

status code appears in 1st line in server->client
response message.
some sample codes:

Application 2-37

HTTP 1.1

In HTTP 1.1, one server with one IP
address can be the home of several web
domains.
A request must specify which web domains
it addresses.
The header Host: must be included

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

Application 2-39

(or use Wireshark!)

Example
tigger 107 % telnet www.cse.yorku.ca 80
Trying 130.63.92.30...
Connected to www.cse.yorku.ca.
Escape character is '^]'.
GET /course_archive/2011-12/W/3214/test.html HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 12 Dec 2011 17:57:18 GMT
Server: Apache/2.2.20 (Unix) DAV/2 mod_ssl/2.2.20 OpenSSL/0.9.8q PHP/5.2.17
X-Powered-By: PHP/5.2.17
Content-Length: 195
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
<TITLE>Archive of Web Pages</TITLE>
</HEAD>
<BODY>
<HR>
<CENTER>
<H2>Archive of Computer Science & Engineering Course Web Pages</H2>
</CENTER>
this is a simple text
</BODY>
</HTML>
Connection closed by foreign host.
tigger 108 %

Esablishing telenet to port 80

request

response

User-server state: cookies

many Web sites use
cookies

four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
user’s browser

4) back-end database at
Web site

example:
Susan always access
Internet from PC
visits specific e-
commerce site for first
time
when initial HTTP
requests arrives at site,
site creates:

unique ID
entry in backend
database for ID

Application 2-41

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application 2-42

Cookies (continued)
what cookies can bring:

authorization
shopping carts
recommendations
user session state
(Web e-mail)

cookies and privacy:
cookies permit sites to
learn a lot about you
you may supply name
and e-mail to sites

aside

how to keep “state”:
protocol endpoints: maintain state
at sender/receiver over multiple
transactions
cookies: http messages carry state

Application 2-43

Web caches (proxy server)

user sets browser:
Web accesses via
cache
browser sends all
HTTP requests to
cache

object in cache: cache
returns object
else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Application 2-44

More about Web caching

cache acts as both
client and server
typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
reduce response time
for client request
reduce traffic on an
institution’s access
link.
Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

Application 2-45

Caching example
assumptions

average object size = 100,000
bits
avg. request rate from
institution’s browsers to origin
servers = 15/sec
delay from institutional router
to any origin server and back
to router = 2 sec

consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-46

Caching example (cont)
possible solution

increase bandwidth of access
link to, say, 10 Mbps

consequence
utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay
+ access delay + LAN delay

= 2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

Application 2-47

Caching example (cont)
possible solution:

install cache

consequence
suppose hit rate is 0.4

40% requests will be
satisfied almost
immediately
60% requests satisfied by
origin server

utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec)
total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application 2-48

Conditional GET

Goal: don’t send object if
cache has up-to-date
cached version
cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>

server: response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

Application 2-49

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-50

FTP: the file transfer protocol

transfer file to/from remote host
client/server model

client: side that initiates transfer (either to/from
remote)
server: remote host

ftp: RFC 959
ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

Application 2-51

FTP: separate control, data connections

FTP client contacts FTP server
at port 21, TCP is transport
protocol
client authorized over control
connection
client browses remote
directory by sending commands
over control connection.
when server receives file
transfer command, server
opens 2nd TCP connection (for
file) to client
after transferring one file,
server closes data connection.

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

server opens another TCP
data connection to transfer
another file.
control connection: “out of
band”
FTP server maintains “state”:
current directory, earlier
authentication

Application 2-52

FTP commands, responses

sample commands:
sent as ASCII text over
control channel
USER username
PASS password

LIST return list of file in
current directory
RETR filename retrieves
(gets) file
STOR filename stores
(puts) file onto remote
host

sample return codes
status code and phrase (as
in HTTP)
331 Username OK,
password required
125 data connection
already open;
transfer starting
425 Can’t open data
connection
452 Error writing
file

Application 2-53

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-54

Electronic Mail
Three major components:

user agents
mail servers
simple mail transfer
protocol: SMTP

User Agent
a.k.a. “mail reader”
composing, editing, reading
mail messages
e.g., Outlook, elm, Mozilla
Thunderbird, iPhone mail
client
outgoing, incoming messages
stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-55

Electronic Mail: mail servers

Mail Servers
mailbox contains incoming
messages for user
message queue of outgoing
(to be sent) mail messages
SMTP protocol between mail
servers to send email
messages

client: sending mail
server
“server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application 2-56

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client
to server, port 25
direct transfer: sending server to receiving server
three phases of transfer

handshaking (greeting)
transfer of messages
closure

command/response interaction
commands: ASCII text
response: status code and phrase

messages must be in 7-bit ASCII

Application 2-57

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Application 2-58

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application 2-59

Try SMTP interaction for yourself:

telnet servername 25
see 220 reply from server
enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

Application 2-60

SMTP: final words

SMTP uses persistent
connections
SMTP requires message
(header & body) to be in 7-
bit ASCII
SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:
HTTP: pull
SMTP: push

both have ASCII
command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response msg
SMTP: multiple objects
sent in multipart msg

Application 2-61

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:
header lines, e.g.,

To:
From:
Subject:

different from SMTP
commands!

body
the “message”, ASCII
characters only

header

body

blank
line

Application 2-62

Mail access protocols

SMTP: delivery/storage to receiver’s server
mail access protocol: retrieval from server

POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

Application 2-63

POP3 protocol

authorization phase
client commands:

user: declare username
pass: password

server responses
+OK

-ERR

transaction phase, client:
list: list message numbers
retr: retrieve message by
number
dele: delete
quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application 2-64

POP3 (more) and IMAP
more about POP3

previous example uses
“download and delete”
mode.
Bob cannot re-read e-
mail if he changes
client
“download-and-keep”:
copies of messages on
different clients
POP3 is stateless
across sessions

IMAP
keeps all messages in
one place: at server
allows user to organize
messages in folders
keeps user state
across sessions:

names of folders and
mappings between
message IDs and folder
name

Application 2-65

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming
with TCP
2.8 Socket programming
with UDP

Application 2-66

DNS: Domain Name System

people: many identifiers:
SSN, name, passport #

Internet hosts, routers:
IP address (32 bit) -
used for addressing
datagrams
“name”, e.g.,
www.yahoo.com - used
by humans

Q: map between IP
address and name, and
vice versa ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

note: core Internet
function, implemented as
application-layer protocol
complexity at network’s
“edge”

Application 2-67

DNS
Why not centralize DNS?

single point of failure
traffic volume
distant centralized
database
maintenance

doesn’t scale!

DNS services
hostname to IP
address translation
host aliasing

Canonical, alias names
mail server aliasing
load distribution

replicated Web
servers: set of IP
addresses for one
canonical name

Application 2-68

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:
client queries a root server to find com DNS server
client queries com DNS server to get amazon.com DNS server
client queries amazon.com DNS server to get IP address for
www.amazon.com

Application 2-69

DNS: Root name servers
contacted by local name server that can not resolve name
root name server:

contacts authoritative name server if name mapping not known
gets mapping
returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Application 2-70

TLD and Authoritative Servers

Top-level domain (TLD) servers:
responsible for com, org, net, edu, aero, jobs,
museums, and all top-level country domains, e.g.:
uk, fr, ca, jp
Network Solutions maintains servers for com TLD
Educause for edu TLD

Authoritative DNS servers:
organization’s DNS servers, providing
authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).
can be maintained by organization or service
provider

Application 2-71

Local Name Server

does not strictly belong to hierarchy
each ISP (residential ISP, company,
university) has one

also called “default name server”
when host makes DNS query, query is sent
to its local DNS server

acts as proxy, forwards query into hierarchy

Application 2-72

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
contacted server
replies with name of
server to contact
“I don’t know this
name, but ask this
server”

Application 2-73

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
puts burden of name
resolution on
contacted name
server
heavy load?

DNS name
resolution example

Application 2-74

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping

cache entries timeout (disappear) after some
time
TLD servers typically cached in local name
servers

• Thus root name servers not often visited
update/notify mechanisms proposed IETF
standard

RFC 2136

Application 2-75

DNS records
DNS: distributed db storing resource records (RR)

Type=NS
name is domain (e.g.,
foo.com)
value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

Type=A
name is hostname
value is IP address

Type=CNAME
name is alias name for some
“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

value is canonical name

Type=MX
value is name of mailserver
associated with name

Application 2-76

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
identification: 16 bit #
for query, reply to query
uses same #
flags:

query or reply
recursion desired
recursion available
reply is authoritative

Application 2-77

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Application 2-78

Inserting records into DNS

example: new startup “Network Utopia”
register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)

provide names, IP addresses of authoritative name server
(primary and secondary)
registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com
How do people get IP address of your Web site?

Application 2-79

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-80

Pure P2P architecture
no always-on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

Three topics:
file distribution
searching for information
case Study: Skype

peer-peer

Application 2-81

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

Application 2-82

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver sequentially
sends N copies:

NF/us time
client i takes F/di time
to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

Application 2-83

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver must send one
copy: F/us time
client i takes F/di time
to download
NF bits must be
downloaded (aggregate)

fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }
i

Application 2-84

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application 2-85

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

Application 2-86

BitTorrent (1)

file divided into 256KB chunks.
peer joining torrent:

has no chunks, but will accumulate them over time
registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

while downloading, peer uploads chunks to other
peers.
peers may come and go
once peer has entire file, it may (selfishly) leave or
(altruistically) remain

Application 2-87

BitTorrent (2)
Pulling Chunks

at any given time,
different peers have
different subsets of
file chunks
periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.
Alice sends requests
for her missing chunks

rarest first

Sending Chunks: tit-for-tat
Alice sends chunks to four
neighbors currently
sending her chunks at the
highest rate

re-evaluate top 4 every 10
secs

every 30 secs: randomly
select another peer,
starts sending chunks

newly chosen peer may join
top 4
“optimistically unchoke”

Application 2-88

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Application 2-89

Distributed Hash Table (DHT)

DHT: distributed P2P database
database has (key, value) pairs;

key: ss number; value: human name
key: content type; value: IP address

peers query DB with key
DB returns values that match the key

peers can also insert (key, value) peers

Application 2-90

DHT Identifiers

assign integer identifier to each peer in range
[0,2n-1].

Each identifier can be represented by n bits.
require each key to be an integer in same range.
to get integer keys, hash original key.

e.g., key = h(“Led Zeppelin IV”)
this is why they call it a distributed “hash” table

Application 2-91

How to assign keys to peers?
central issue:

assigning (key, value) pairs to peers.
rule: assign key to the peer that has the
closest ID.
convention in lecture: closest is the
immediate successor of the key.
e.g.,: n=4; peers: 1,3,4,5,8,10,12,14;

key = 13, then successor peer = 14
key = 15, then successor peer = 1

Application 2-92

Adding a key

Assume that a peer wants to insert a
record in the database.
Simply calculate the hash, and send it to
the immediate successor.
How can we know the immediate successor?
Every peer keeps track of all the peers is
not a viable solution (may be in the
millions).

1

3

4

5

8
10

12

15

Circular DHT (1)

each peer only aware of immediate successor
and predecessor.
“overlay network”

Application 2-94

Circular DHT (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Application 2-95

Circular DHT with Shortcuts

each peer keeps track of IP addresses of predecessor,
successor, short cuts.
reduced from 6 to 2 messages.
possible to design shortcuts so O(log N) neighbors, O(log
N) messages in query

1

3

4

5

8
10

12

15

Who’s resp
for key 1110?

Application 2-96

Peer Churn

peer 5 abruptly leaves
Peer 4 detects; makes 8 its immediate successor;
asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.
What if peer 13 wants to join? Only knows of node 1

1

3

4

5

8
10

12

15

To handle peer churn, require
each peer to know the IP
address of its two successors.
Each peer periodically pings its

two successors to see if they
are still alive.

Application 2-97

P2P Case study: Skype
inherently P2P: pairs of
users communicate.
proprietary application-
layer protocol (inferred
via reverse engineering)–
All messages encrypted
hierarchical overlay with
SNs
Index maps usernames
to IP addresses;
distributed over SNs
To call someone, search
the distributed index for
his/her IP

Skype clients (SC)

Supernode
(SN)

Skype
login server

Application 2-98

Peers as relays
problem when both Alice
and Bob are behind
“NATs”.

NAT prevents an outside
peer from initiating a call to
insider peer

solution:
When you login, you are
assigned a nonNAT-ed SN
using Alice’s and Bob’s SNs,
relay is chosen
each peer initiates session
with relay.
peers can now communicate
through NATs via relay

Application 2-99

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-100

Socket programming

Socket API
introduced in BSD4.1 UNIX,
1981
explicitly created, used,
released by apps
client/server paradigm
two types of transport
service via socket API:

unreliable datagram
reliable, byte stream-
oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

Application 2-101

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

Application 2-102

Socket programming with TCP

Client must contact server
server process must first
be running
server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:
creating client-local TCP
socket
specifying IP address, port
number of server process
when client creates socket:
client TCP establishes
connection to server TCP

when contacted by client,
server TCP creates new
socket for server process to
communicate with client

allows server to talk with
multiple clients
source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

Application 2-103

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Application 2-104

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Stream jargon

stream is a sequence of
characters that flow into
or out of a process.
input stream is attached to
some input source for the
process, e.g., keyboard or
socket.
output stream is attached
to an output source, e.g.,
monitor or socket.

Application 2-105

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

Application 2-106

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

Application 2-107

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

create
input stream

attached to socket

send line
to server

read line
from server

Application 2-108

close socket
(clean up behind yourself!)

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

Application 2-109

create
welcoming socket

at port 6789

create input
stream, attached

to socket

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Application 2-110

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 Socket programming

with TCP
2.8 Socket programming

with UDP

Application 2-111

Socket programming with UDP

UDP: no “connection” between
client and server
no handshaking
sender explicitly attaches
IP address and port of
destination to each packet
server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint:

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

Application 2-112

Client/server socket interaction: UDP

Server (running on hostid)

close
clientSocket

read datagram from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-113

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (recall
that TCP sent “byte
stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

Application 2-114

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

create
input stream

create
client socket

translate
hostname to IP

address using DNS

Application 2-115

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

create datagram
with data-to-send,

length, IP addr, port

send datagram
to server

read datagram
from server

Application 2-116

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Application 2-117

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

get IP addr
port #, of

sender

write out
datagram
to socket

end of while loop,
loop back and wait for
another datagram

create datagram
to send to client

Application 2-118

Network programming in C

A very excellent tutorial is Beej’s guide to
network programming (see course web site)
Here, I will present very minimal
information just enough to write one
server/client application.
The above tutorial covers both IPv4 and
IPv6, here I will cover only IPv4

Byte Order

Big endian 0xb34f are represented as b3 in
one byte, the next one contain 4f That also
is network byte order
Little endian 0xb34f are represented as 4f
followed by b3 (x86 compatible machines)
Tp prevent confusion, convert every thing
before you send to network order and
convert every thing that you receive to
host order
htons() htonl(), ntohs(), ntohl()

Structs
struct addrinfo {

int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
int ai_protocol; // use 0 for "any"
size_t ai_addrlen; // size of ai_addr in bytes
struct sockaddr *ai_addr; // struct sockaddr_in or _in6
char *ai_canonname; // full canonical hostname

struct addrinfo *ai_next; // linked list, next node
};

This is a ,new struct used to hold information
needed by the socket.

getaddrinfo() is used to fill it up

Structs

Can be casted to each other

struct sockaddr {

unsigned short sa_family; // address family, AF_xxx

char sa_data[14]; // 14 bytes of protocol address
};

//IPv4 only
struct sockaddr_in {

short int sin_family; // Address family, AF_INET

unsigned short int sin_port; // Port number

struct in_addr sin_addr; // Internet address
unsigned char sin_zero[8]; // Same size as struct sockaddr

};

Structs

Struct sockaddr_storage is large enough to hold
both IPv4 and IPv6 info.
Check the ss_family, then cast it to sockaddr_in
or sockaddr_in6

struct sockaddr_storage {

sa_family_t ss_family; // address family

// all this is padding, implementation specific, ignore it:

char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;

char __ss_pad2[_SS_PAD2SIZE];

};

Example

A minimal code – no error checking
The complete code is in the Beej’s tutorial
and is available at the course web site

Example
/* no error checking, only gor IPv4 see wen site for the full code */
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{
struct addrinfo hints, *res, *p;
int status;
char ipstr[INET6_ADDRSTRLEN];

memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET; // AF_INET for IPv4 only
hints.ai_socktype = SOCK_STREAM;

getaddrinfo(argv[1], NULL, &hints, &res);

printf("IP addresses for %s:\n\n", argv[1]);

Example
for(p = res;p != NULL; p = p‐>ai_next) {

void *addr;
char *ipver;

// get the pointer to the address itself,
struct sockaddr_in *ipv4 = (struct sockaddr_in *)p‐>ai_addr;
addr = &(ipv4‐>sin_addr);
ipver = "IPv4";

// convert the IP to a string and print it:
inet_ntop(p‐>ai_family, addr, ipstr, sizeof ipstr);

printf(" %s: %s\n", ipver, ipstr);
}

freeaddrinfo(res); // free the linked list

return 0;
}

Example

tigger 121% gcc showipv4.c –lnsl

tigger 122% a.out indigo.cse.yorku.ca
IP addresses for indigo.cse.yorku.ca:

IPv4: 130.63.92.157
tigger 123% a.out www.cnn.com

IP addresses for www.cnn.com:

IPv4: 157.166.226.26
IPv4: 157.166.255.18

IPv4: 157.166.255.19

IPv4: 157.166.226.25

Client Server Example in C
/* client.c ‐‐ a stream socket client demo*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#define PORT "3490" // the port client will be connecting to
#define MAXDATASIZE 100 // max number of bytes we can get at once
// get sockaddr, IPv4 or IPv6:
void *get_in_addr(struct sockaddr *sa) {
if (sa‐>sa_family == AF_INET) {
return &(((struct sockaddr_in*)sa)‐>sin_addr);

}
return &(((struct sockaddr_in6*)sa)‐>sin6_addr);

}

Clinet Server cont.
int main(int argc, char *argv[])
{
int sockfd, numbytes;
char buf[MAXDATASIZE];
struct addrinfo hints, *servinfo, *p;
int rv;
char s[INET6_ADDRSTRLEN];
if (argc != 2) {
fprintf(stderr,"usage: client hostname\n");
exit(1);

}
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

if ((rv = getaddrinfo(argv[1], PORT, &hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 1;

}

Client Server cont.
//Loop thorough all the results and connect to the first one
for(p = servinfo; p != NULL; p = p‐>ai_next) {
if ((sockfd = socket(p‐>ai_family, p‐>ai_socktype,

p‐>ai_protocol)) == ‐1) {
perror("client: socket");
continue;

}

if (connect(sockfd, p‐>ai_addr, p‐>ai_addrlen) == ‐1) {
close(sockfd);
perror("client: connect");
continue;

}

break;
}

Client Server cont.
if (p == NULL) { fprintf(stderr, "client: failed to connect\n"); return 2; }

inet_ntop(p‐>ai_family, get_in_addr((struct sockaddr *)p‐>ai_addr), s, sizeof s);
printf("client: connecting to %s\n", s);

freeaddrinfo(servinfo); // all done with this structure

if ((numbytes = recv(sockfd, buf, MAXDATASIZE‐1, 0)) == ‐1) {
perror("recv");
exit(1);

}

buf[numbytes] = '\0';

printf("client: received '%s'\n",buf);

close(sockfd);

return 0;
}

UDP in C

See the programs on the course web site.

Chapter 2: Summary

application architectures
client-server
P2P
hybrid

application service
requirements:

reliability, bandwidth,
delay

Internet transport
service model

connection-oriented,
reliable: TCP
unreliable, datagrams: UDP

our study of network apps now complete!
specific protocols:

HTTP
FTP
SMTP, POP, IMAP
DNS
P2P: BitTorrent, Skype

socket programming

Application 2-133

Chapter 2: Summary

typical request/reply
message exchange:

client requests info or
service
server responds with
data, status code

message formats:
headers: fields giving
info about data
data: info being
communicated

most importantly: learned about protocols

Important themes:
control vs. data msgs

in-band, out-of-band
centralized vs.
decentralized
stateless vs. stateful
reliable vs. unreliable
msg transfer
“complexity at network
edge”

Application 2-134

