CSE 3101 January 4, 2012

Review Questions

- 1. Prove that $\neg(\neg p \Leftrightarrow (r \lor p))$ is logically equivalent to $r \Rightarrow p$.
- **2.** Use a proof by contradiction to show that if n is an integer and n^2 is even, then n is even.
- **3.** Is the following statement true or false? $\forall x \text{ in } \mathbb{R}, \exists y \text{ in } \mathbb{R} \text{ such that } y \geq 0 \land (y = x \lor y = -x).$ Explain why your answer is correct.
- **4.** Is the following statement true or false? For all sets A, B and $C, A (B \cup C) \subseteq (A B) \cap (A C)$. Prove your answer is correct.
- **5.** Let $f: B \to C$ and $g: A \to B$. Prove that if $f \circ g$ is onto then f is onto.
- **6.** Prove that $x^3 10x^2$ is *not* $O(x^2)$.
- 7. Prove that for every positive integer n, $\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2$.
- 8. Yark University has 40000 students. Each student takes 5 classes each term. The University offers 1000 classes each term. The largest classroom at Yark holds 180 students. Is this a problem? Explain why.
- **9.** Consider the domain of all people. Let P(x, y) represent the statement "x is the parent of y".
 - (a) Translate the following formulas into clear and precise English.

$$\exists x \forall y P(x, y)$$
$$\forall y \exists x P(x, y)$$

- (b) Express the statement "Somebody has no grandchildren" using only the predicate P.
- **10.** Prove that for all integers a, b and c, the product of some pair of the three integers is non-negative. (In other words, show that $ab \ge 0$ or $ac \ge 0$ or $bc \ge 0$.)
- 11. Let $A = \{0, 1, 2\}$ and $B = \{1, 3\}$. List the elements of each of the following sets.
 - (a) A B =
 - (b) $A \times B =$
- **12.** Let $f: A \to B$. Let S and T be subsets of A.
 - (a) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$.

1 Over...

- (b) Give an example of a function f and sets S and T such that $f(S \cap T) \neq f(S) \cap f(T)$. Briefly explain why your answer is correct.
- 13. Give a good lower bound on $\sum_{i=1}^{n} i^{1.5} (\log_2 i)^2$ using Ω notation. Prove your answer is correct.
- **14.** Use the integral method to get a good upper bound on $\sum_{i=0}^{n} ie^{2i^2}$.
- **15.** Is $\Omega(n) \subseteq \Omega(n+\sqrt{n})$? Prove your answer is correct.
- **16.** Is $3^{\log n} \in O(2^{\log n})$? Prove your answer is correct.
- 17. Beside each function f(n) in the left column, write down the number of the first function g(n) in the right column such that $f(n) \in O(g(n))$.
 - (a) $n^{1.9}(\log_2 n)^2$

1. 1

(b) $\sum_{i=1}^{n} \sqrt{i} \log_2 i$ _____

- $2. \log n$
- (c) $(n\sqrt{n} + 7n + 2)^2$
- 3. \sqrt{n}

4. $\sqrt{n} \log n$

(d) $10 \cdot 2^{\log_4 n}$ _____

5. n

(e) $\sum_{i=1}^{n} \frac{n}{i \log n}$

- 6. $n \log n$
- 7. n^2
- 8. n^3
- 9. 2^n
- 10. n^n
- **18.** Prove $n^2 \leq 2^n$ for all natural numbers $n \geq 4$.
- **19.** Let $f: A \to B$ be a function. For any set $C \subseteq B$, define $f^{-1}(C)$ to be the set $\{a \in A: f(a) \in C\}$. Prove that for every $f: A \to B$ and subsets S and T of B we have $f^{-1}(S) \cap f^{-1}(T) = f^{-1}(S \cap T)$.
- **20.** Show that if 51 distinct numbers are chosen among $\{1, 2, 3, \dots, 100\}$ then there must be two numbers among them whose sum is 101.