
Chapter 1

Reasoning About
Algorithms

An algorithm takes some type of input and applies a sequence of steps in order
to produce some type of output. In general, these inputs and outputs can
take many forms. For example, input can come from the keyboard, a mouse’s
movements or a sensor that is reading the temperature. Outputs might be
shapes drawn on a screen, characters sent to a printer, or movements of a
robot’s arm. For now, we will focus on offline algorithms, where all of the input
is available when the algorithm begins running, and the algorithm is intended
to produce some output and terminate. Online algorithms, where there are
constant streams of inputs and outputs, are also fascinating objects to study
but they are more complicated, so we start with offline algorithms. Many of the
techniques we use in analyzing offline algorithms can be generalized to deal with
online algorithms too. For example, an online problem can often be analyzed
as an infinite sequence of steps, where each step is accomplished by an offline
algorithm.

For the offline algorithms we study, the inputs and outputs are finite, but
usually unbounded. This means that any individual input given to the algorithm
can be represented as a finite string of characters (chosen from a finite alphabet),
but we put no limit on the length of the string. Thus, there are usually infinitely
many possible inputs, but each possible input is of finite size. Similarly, the
outputs produced by the algorithms are finite but unbounded.

A problem specification describes

1. which inputs are permitted, and

2. which outputs are acceptable for each possible input.

These two parts of the problem specification are called the preconditions and
postconditions of the problem, respectively. When you design an algorithm to
solve the problem, the preconditions are statements that you can assume are

1

2 CHAPTER 1. REASONING ABOUT ALGORITHMS

true before the algorithm is run, and the postconditions are statements that
ought to be true when (and if) the algorithm terminates.

Example 1 Addition of two natural numbers.
Precondition: the input must be a pair of natural numbers x and y.
Postcondition: the output must be the integer x + y.
(To be more precise, we might also specify the representation used for the inte-
gers. For example, we might say that they must be represented in binary with
no leading 0’s.)

Example 2 Finding the maximum element in an array of integers.
Precondition: the input is an array A[1..n] of integers (where n ≥ 1).
Postcondition: the output must be some integer i ∈ {1, . . . , n} such that for all
j ∈ {1, . . . , n}, A[i] ≥ A[j].
Notice that there may be several different acceptable outputs for a single input
if the maximum value occurs several times in the array.

An algorithm is a correct solution to a problem if, for every possible input,
it produces an output and the output produced is acceptable, according to the
specification of the problem.

After spending some time learning about algorithms and designing your own,
you have probably realized the following tasks can be difficult.

• designing a correct algorithm for a problem

• convincing yourself that an algorithm is correct

• convincing someone else that your algorithm is correct

As problems become larger and more complex, these tasks can become ex-
tremely difficult, so we need some tools to tackle them systematically. You
might try accomplishing these tasks by running the algorithm on a number of
test inputs and seeing whether the output produced is legal. If you get an in-
correct result, you know the algorithm is incorrect. But what if the algorithm
produces correct outputs for all of the test cases? This may increase your con-
fidence that the algorithm is correct. However, most interesting problems have
infinitely many possible inputs, so this technique is quite useless in showing an
algorithm actually is correct. (Remember: being correct means that it produces
a correct output for every possible input.) Thus, testing is a good way to dis-
cover that your algorithm is incorrect, but it usually cannot establish that the
algorithm is correct.

Suppose we eventually determine (somehow) that an algorithm correctly
solves a problem. Then, we may also have to decide whether it is feasible to
implement it. For example, if the algorithm will take 100 years to run on your
computer before producing an output, it is probably useless to you. Similarly, if
the algorithm will require more memory space than you have on your computer,
you will not be able to use it. To determine whether an algorithm is feasible to
implement, or to compare two (correct) algorithms to see which one is preferable,

1.1. APPROACHING A PROBLEM 3

we would like to study the efficiency of algorithms. In other words, we would
like to quantify the resource usage of an algorithm (where the resource might
be computation time, memory space, battery usage in a mobile device, or some
other quantity we are interested in). We could try running the algorithm on
some sample inputs and measuring its resource usage. But again, if there are
infinitely many possible inputs, this approach can tell us that the algorithm is
infeasible (for example, if we get an “out of memory” error), but is not useful
for establishing that the algorithm will have reasonable resource requirements
for all possible inputs.

We have seen that testing is ultimately useless for providing guarantees that
an algorithm is correct or efficient whenever the number of possible inputs is
infinite. So what can we do? Fortunately, there is a branch of human knowl-
edge that routinely reasons about infinitely many cases at once: mathematics.
Mathematicians spend all of their time proving statements like the following.

“Every even integer can be written as the sum of two odd integers.”
“Every right triangle with side lengths a < b < c has c2 = a2 + b2.”
Mathematicians would never try to prove the latter statement by testing

every right triangle one by one, because this would be an endless task. Instead,
mathematicians have developed numerous technique for proving such universally
quantified statements are true. The kinds of statements we want to prove are
also universally quantified:

“Every input, when given to our algorithm, will cause the algorithm to
produce a correct output.”

“Every input of size n, when given to our algorithm, will be handled using
at most 14n2 steps.”

Thus, we can use the same techniques that mathematicians have developed
over the past 2000+ years to reason about algorithm correctness and efficiency.

The rest of this chapter will discuss how to prove, using techniques from
mathematics, that an algorithm is correct. We shall come back to the question
of quantifying the resource usage of algorithms later.

1.1 Approaching a Problem

Beginners often approach an algorithmic problem by sitting down and starting
to type code. This is the slowest way to solve a non-trivial problem, because
you can waste a lot of time before discovering that the approach you are using
cannot be completed, is incorrect, is way too slow or has some other essential
flaw. If any of these problems occur, it is often necessary to throw away the
code (or large parts of it) and start over. If you are fortunate enough to get a
complete programme that seems to work when you test it, it will probably be
extremely ugly and it will likely be difficult to convince yourself or others that
it really is correct.

A better approach is to figure out a fairly complete outline of the algorithm
(including what data structures to use, a high-level description of the steps
needed, etc.) before writing the (beautiful, well-documented) code. The first

4 CHAPTER 1. REASONING ABOUT ALGORITHMS

step of designing the algorithm is often very difficult and can require a lot of work
before you ever write a single line of code. But this approach is usually much
faster overall, and leads to more elegant programmes. After the algorithm is
designed, one can check that the programme really is correct, perhaps by trying
some test cases first to debug it, and then proving that it is correct.

An even better approach is similar to the one described above, but will
instead involve designing the algorithm and its proof of correctness simultane-
ously. This approach allows you to clarify the goals of each piece of the algorithm
straightaway, and makes it easier to avoid mistakes in the design. Throughout
this course, we shall develop tools to help you use this approach of designing an
algorithm in conjunction with the proof of correctness.

1.2 An Example

Consider the following problem.
Input: a positive integer n.
Output: “yes” if n can be expressed as the difference of two perfect squares,
and no otherwise.
In other words, given n, we want to determine whether there are two integers a
and b such that n = a2 − b2. For example, the answer should be “yes” for the
input n = 12 because 12 = 42 − 22.

Idea 1: Loop through all possible values of a and b and check whether
a2 − b2 = n.

Unfortunately this is not so easy because there are infinitely many values
of a and b that could be tried. Unless we can limit the range of a and b, this
approach is hopeless.

Idea 2: Try a few random small values of n to get some intuition: n =
8, 9, 15, 20, 33.

8 = 32 − 12

9 = 52 − 42

15 = 82 − 72

20 = 62 − 42

33 = 72 − 42

Maybe the answer is always “yes” for every n.
No, it turns out that 6 cannot be expressed as the difference of two squares

(as we shall soon see).

Idea 3: a2 − b2 = (a + b)(a − b). Now, instead of expressing n as the
difference of two numbers, we have to express it as the product of two numbers.
Maybe this way of viewing the problem will make it easier.

Combining Idea 1 and Idea 3 does yield an algorithm. If a and b are integers,
then so are a+b and a−b, so we can just check all possible ways of factoring n into

1.2. AN EXAMPLE 5

two integers x and y, and see if it is possible to express x and y as a+b and a−b
for some integers a and b. For example, for n = 8, there are four possible ways to
express n as the product of two integers: 8 = 1·8 = 2·4 = (−1)(−8) = (−2)(−4).
Some of these factor pairs cannot be expressed as a + b and a− b for integers a
and b. For example, if we want a + b = 1 and a − b = 8, we must have a = 9

2
and b = − 7

2 , which are not integers. But when we try using the pair of factors
8 = (−2)(−4), we find that a = −3 and b = −1 works; thus, 8 = (−3)2− (−1)2.
This approach gives us the following algorithm.

Expressible(n)
Precondition: n is a positive integer
Postcondition: outputs “yes” if n = a2 − b2 for some integers a, b and “no” otherwise
for x = −n..n except 0 // try all possible integer factorizations n = x · n

x
// solve the linear equations a + b = x and a− b = n

x for a and b:
a = x+ n

x

2

b = x−n
x

2
if a and b are integers output “yes” and halt

end for
output “no”

end Expressible

This algorithm is correct, but not very fast. Next, we shall use one more
observation to help us find a much simpler algorithm (and prove that the simpler
algorithm is correct).

Idea 4: a + b and a − b always have the same parity1. (If a and b have
the same parity, then a + b and a − b are both even. If a and b have opposite
parities, then a + b and a− b are both odd.)

So if we can express n as a2 − b2 = (a + b)(a − b), then we know n is the
product of two numbers with the same parity. The converse of this statement
is also true.

Proposition 3 A positive integer n is expressible as a2− b2 iff n is the product
of two integers with the same parity.

Proof: We prove each direction separately.
(⇒): Assume n = a2−b2 for some integers a and b. Then, n = (a+b)(a−b)

where a + b and a− b are integers with the same parity.
(⇐): Assume n = xy where x and y are two integers with the same parity.

We want to find integers a, b such that x = a + b and y = a− b. Solving these
linear equations for a and b, we get a = x+y

2 and b = x−y
2 . Note that both a

and b are integers since x and y have the same parity.

Now, how do we determine whether n can be expressed as the product of
two integers with the same parity? Since parity seems to be important in this
problem, let’s consider cases according to the parity of n.

1The parity of an integer says whether the number is even or odd

6 CHAPTER 1. REASONING ABOUT ALGORITHMS

If n is odd, it is fairly easy to see that we can choose x = n and y = 1. Then
n = x · y, where x and y are both odd, so the answer should be “yes”.

Now suppose n is even. If n = x · y where x and y have the same parity,
then x and y must both be even (since the product of two odd numbers could
not be even), so n must be a multiple of 4. Conversely, if n is a multiple of 4,
we can choose x = n

2 and y = 2, which are both even. Thus, for even values of
n, the answer should be yes if and only if n is a multiple of 4.

This reasoning gives us a simple algorithm to solve the problem:

Expressible(n)
Precondition: n is a positive integer
Postcondition: outputs “yes” if n = a2 − b2 for some integers a, b and “no” otherwise
if n is odd then output “yes”
else if n is divisible by 4 then output “yes”
else output “no”
end if

end Expressible

The proof that this algorithm is correct is already embedded in the reasoning
that we used to build the algorithm.

Proof of Correctness: But let’s recap it as a formal proof. It is trivial to
see that the algorithm always terminates and outputs an answer. Since the
structure of the algorithm is an if statement with three cases, it is natural to
structure the proof that the output is correct as a proof by cases.

Case 1 (n is odd): The algorithm outputs “yes” in this case, so we must
show that n is expressible as a2 − b2 for some integers a, b. Let a = n+1

2 and
b = n−1

2 . (These are the values we get from the equations above when we take
x = n and y = 1). Notice that a and b are both integers since n is odd. Then,

a2 − b2 =
(

n + 1
2

)2

−
(

n− 1
2

)2

=
n2 + 2n + 1− n2 + 2n− 1

4
= n

Thus, the algorithm outputs the correct answer in this case.
Case 2 (n is divisible by 4): The algorithm outputs “yes” in tihs case, so we

must show that n = a2 − b2 for some integers a, b. Let a =
n
2 +2

2 and b =
n
2−2

2 .
(These are the values we get from the equations above when we take x = n

2
and y = 2). Notice that a and b are both integers since n

2 and 2 are both even.
Then,

a2 − b2 =
(n

2 + 2
2

)2

−
(n

2 − 2
2

)2

=
n2

4 + 2n + 4− n2

4 + 2n− 4
4

= n

1.3. LOOPS 7

Thus, the algorithm outputs the correct answer in this case.
Case 3 (otherwise): We know that n is even but not divisible by 4. The

algorithm outputs “no” in this case, so we must show there do not exist integers
a, b such that n = a2 − b2. Showing directly that things do not exist is often
difficult. As a rule of thumb, it is helpful to use a proof by contradiction to
show something does not exist.

To derive a contradiction, assume there are integers a and b such that n =
a2 − b2 = (a + b)(a− b). Since n is even, either a + b or a− b must be even. So
both a + b and a− b must be even (since a + b and a− b always have the same
parity). Thus, there exist integers c and d such that a + b = 2c and a− b = 2d.
Then, n = (a + b)(a − b) = 2c · 2d = 4cd is divisible by 4, contradicting the
fact that n is not divisible by 4. Thus, there cannot exist integers a, b such that
n = a2 − b2.

1.3 Loops

The algorithm that we proved correct in the preceding section had no loops or
recursion, so it was pretty straightforward to see what it did. Reasoning about
the correctness of programmes that contain loops or recursion is often more
difficult. Fortunately, there are some standard techniques that help us, which
we shall consider next.

Because a loop can be iterated many times and sometimes the number of
iterations is not even known in advance, it is difficult to reason about what is
being achieved by all the iterations of the loop. Instead, it is much easier to
focus on what a single iteration of the loop does. But we do not want to think
only about the first iteration of the loop; we want to think about some arbitrary
iteration in the middle of the execution of the programme. In order to figure
out what is happening in that iteration, it is helpful to think about what state
the memory of the machine is in at the beginning of the loop. (This is like a
precondition for a single iteration of the loop.) We formalize our knowledge
about the state of the memory at the beginning of the loop by stating a loop
invariant.

A loop invariant is simply a statement that is true at the beginning of each
iteration of the loop. However, deciding what loop invariant to use to prove that
a loop accomplishes some task is actually quite tricky. The key idea is that the
loop invariant should summarize what has been accomplished by all previous
iterations of the loop. The key word is summarize: you do not want the loop
invariant to be so detailed that you have to think in detail about all previous
iterations of the loop; remember that our goal was to think only about a single
iteration of the loop. However, it must contain all the crucial information about
what has been done so far by the previous iterations of the loop. That is, it
must contain all information that we shall need in order to see that the next
iteration does what it is supposed to do, and it must allow us to prove that
when the loop terminates (if it does), the postconditions of the loop are true.

Whenever you state a loop invariant, you are making a claim that it is true

8 CHAPTER 1. REASONING ABOUT ALGORITHMS

at the beginning of each iteration of a loop. So, you must prove that your claim
is correct. Ordinarily, this is done using mathematical induction. For the base
case, you prove that the invariant is true at the beginning of the first iteration
of the loop. For the induction step, you assume that the invariant is true at
the beginning of some iteration of the loop, and you show that it is true at the
beginning of the next iteration.

Coming up with good loop invariants is hard. Once you get more practice,
it will become easier. At first, you will often find that when you try to do
the induction step, there will be some piece of information missing from your
invariant, so you will have to go back and change the invariant, and then try
the proof again. You may have to do this a few times before you can make the
proof work. Later, with more experience, you will find that you can do a lot
of the necessary adjustments to the loop invariant by just thinking through the
inductive step in your head.

Suppose you have a typical loop:

assert Pre
loop

invariant: I
exit when C
B

end loop
assert Post

Here, B represents a chunk of code that forms the body of the loop, and
Pre, I, C and Post represent statements that evaluate to true or false. (Pre
is the precondition that must be true before the loop begins, I is the invariant
that you choose for the loop, C is the exit condition for the loop and Post is the
postcondition that you want to ensure is satisfied when the loop terminates.)

To use your invariant to prove that the loop functions correctly, you should
prove the following four things.

1. Pre⇒ I: This says that if the preconditions are satisfied, then the invari-
ant will be true at the beginning of the first iteration of the loop. This
is the base case of the inductive proof that the invariant is true at the
beginning of each loop iteration.

2. If I ∧¬C is true and then the body of the loop B is executed, then I will
be true again. This is the inductive step of the proof that the invariant is
true at the beginning of each loop iteration. (Note that we are allowed to
use the fact that the exit condition C of the loop is not satisfied in order
to prove the induction step, because if C were true, there would be no
iteration of the loop.)

3. I∧C ⇒ Post: This says that if the loop terminates (because C is satisfied),
then the postconditions are satisfied.

4. The loop must eventually terminate.

1.3. LOOPS 9

Note that the first two items form a proof by induction that I is true at the
start of every iteration of the loop.

1.3.1 Example: Binary Search

The search problem in a sorted array is defined as follows.
Precondition: Array A[1..n] contains integers with n ≥ 1, and A[i] ≤ A[i+1]

for 1 ≤ i < n and an integer key k.
Postcondition: If k appears in A[1..n], output an index i such that A[i] = k;

otherwise output “not found”
We can write the binary search algorithm as a loop. At each iteration, we

have narrowed down the set of possible locations for the desired key to some
smaller chunk of the array A[lo..hi], where 1 ≤ lo ≤ hi ≤ n. At each iteration,
we try to cut the size of this chunk roughly in half by seeing whether the desired
key is in the right or left half of the current chunk. The essential invariant to
maintain is that we do not eliminate portions of the array that contains (all
copies of) the key k.

BinSearch(A[1..n], k)
Precondition: A[i] ∈ Z for all i, n ≥ 1, and A[i] ≤ A[i + 1] for 1 ≤ i < n, k ∈ Z.
Postcondition: If k appears in A[1..n], output an i such that A[i] = k; otherwise output “not found”
lo = 1
hi = n
loop

invariant: (1) 1 ≤ lo ≤ hi ≤ n
(2) A[1..lo− 1] does not contain k
(3) if A[hi] 6= k then A[hi + 1..n] does not contain k.

exit when lo = hi
mid =

⌊
lo+hi

2

⌋
if A[mid] ≥ k then hi = mid
else lo = mid + 1
end if

end loop
if A[lo] = k then output lo
else output “not found”
end if

end BinSearch

In the following argument we use lo`, mid` and hi` to represent the value of
the variables lo, mid and hi after ` iterations of the loop.

Claim 4 The invariants (1), (2), (3) are true at the start of each iteration of
the loop.

Proof: We prove this by induction.
Base Case Initially, lo = 1 and hi = n, so 1 ≤ lo ≤ hi ≤ n (since n ≥ 1

according to the precondition). Also, A[1..lo − 1] and A[hi + 1..n] contain no
elements, so they do not contain k.

10 CHAPTER 1. REASONING ABOUT ALGORITHMS

Inductive Step Let ` ≥ 1. Assume the invariants are true after ` − 1
iterations. We prove that the invariants are true after ` iterations. Consider the
`th iteration. Since the code for the body of the loop is divided into two cases
by the if statement, it is natural to write the proof of the inductive step in this
way too.

Case 1 (A[mid`] ≥ k): Then we have lo` = lo`−1 and hi` = mid` =⌊
lo`−1+hi`−1

2

⌋
. We prove each of the three parts of the invariant.

(1):

1 ≤ lo`−1 (by part (1) of induction hypothesis)
= lo`

lo` = lo`−1+lo`−1
2

≤ lo`−1+hi`−1
2 (by part (1) of induction hypothesis)

⇒ lo` ≤
⌊

lo`−1+hi`−1
2

⌋
(since lo` is an integer)

= hi`

hi` =
⌊

lo`−1+hi`−1
2

⌋
≤
⌊

hi`−1+hi`−1
2

⌋
(by part (1) of induction hypothesis)

= hi`−1

≤ n (by part (1) of induction hypothesis)

(2): By part (2) of the induction hypothesis, A[1..lo`−1−1] does not contain
k. But lo` = lo`−1, so A[1..lo` − 1] does not contain k.

(3): We have A[hi`] = A[mid`] ≥ k and A is sorted. If A[hi`] = k, then (3)
is trivially satisfied2. If A[hi`] > k, then all elements of A[hi`..n] are greater
than k, so (3) is true after ` iterations.

Case 2 (A[mid`] < k): Then we have lo` = mid` + 1 =
⌊

lo`−1+hi`−1
2

⌋
+ 1

and hi` = hi`−1. We prove each of the three parts of the invariant.

(1) Note that, because the exit condition is not satisfied after `−1 iterations,
lo`−1 6= hi`−1. By part (1) of the induction hypothesis, lo`−1 ≤ hi`−1, so
lo`−1 < hi`−1.

2This is the case where we need the phrase “if A[hi] 6= k” in invariant (3): if A[mid`] = k,
we may throw away a portion of the array that contains copies of k, but that’s okay because
we still have at least one copy of k inside A[lo..hi].

1.3. LOOPS 11

lo` =
⌊

lo`−1+hi`−1
2

⌋
+ 1

≥
⌊

1+1
2

⌋
+ 1 (by part (1) of induction hypothesis)

> 1

lo` =
⌊

lo`−1+hi`−1
2

⌋
+ 1

≤
⌊

hi`−1−1+hi`−1
2

⌋
+ 1 (since lo`−1 < hi`−1)

= hi`−1 − 1 + 1
= hi`

hi` = hi`−1

≤ n (by part (1) of induction hypothesis)
(2): We have A[lo` − 1] = A[mid`] < k. Since A is sorted, all elements of

A[1..lo` − 1] are less than k.
(3): Invariant (3) is identical to part (3) of the induction hypothesis, since

hi` = hi`−1.

Claim 5 If the loop terminates, then the postconditions are satisfied.

Proof: When the loop terminates, the invariants are true and lo = hi.
If A[hi] = k, the algorithm outputs hi and this clearly satisfies the postcon-

ditions.
If A[hi] 6= k, the algorithm outputs “not found”, so we have to argue that

k does not appear anywhere in the array A[1..n]. Since lo = hi we know that
A[1..hi− 1] does not contain k, by invariant (2). By invariant (3), A[hi + 1..n]
does not contain k. Thus, k is not in A[1..n].

Claim 6 The loop must eventually terminate.

Proof: To prove this, we define hi−lo to be a measure of how far the algorithm
has progressed. This quantity is always a non-negative integer (since values
assigned to hi, lo and mid are always integers and we proved that hi ≥ lo) and
we shall show that it decreases at each iteration. Thus it must eventually reach
0 and the loop will then terminate.

To see that the value of hi − lo decreases during the `th loop iteration,
we consider two cases. Notice that hi`−1 − lo`−1 ≥ 0 by invariant (1) and
hi`−1− lo`−1 6= 0; otherwise there would be no `th iteration. So, hi`−1− lo`−1 >
0.

Case 1 (A[mid] ≥ k): Then,

hi` − lo` =
⌊

lo`−1+hi`−1
2

⌋
− lo`−1

≤ lo`−1+hi`−1
2 − lo`−1

= hi`−1−lo`−1
2

< hi`−1 − lo`−1 (since hi`−1 − lo`−1 > 0).
Case 2 (A[mid] < k): Then,

12 CHAPTER 1. REASONING ABOUT ALGORITHMS

hi` − lo` = hi`−1 − (
⌊

lo`−1+hi`−1
2

⌋
+ 1)

< hi`−1 − lo`−1+hi`−1
2 + 1− 1 (since −bxc < −x + 1)

= hi`−1−lo`−1
2

< hi`−1 − lo`−1 (since hi`−1 − lo`−1 > 0).

This completes the detailed proof that the binary search algorithm is correct.

1.3.2 Example with a Counted Loop: Computing Facto-
rials

The factorial is a unary postfix operator ! on non-negative integers defined
recursively as follows.

0! = 1
n! = n · (n− 1)!, for n > 0

The following code computes n!. In stating the invariant, we have used the
notation resultk to indicate the value of the result variable after k iterations of
the loop.

Factorial(n)
Precondition: n is a non-negative integer
Postcondition: output value is n!
result = 1
for i = 1..n

invariant: resultk = k!
result = i · result

end for
output result

end Factorial

In this case, termination is trivial, since the loop is only performed n times.
We establish the loop invariant using a proof by induction.

Base Case (k = 0): Initially, result0 = 1 = 0!.
Induction Step: Let k > 1. Assume the invariant is true after k − 1

iterations, i.e., assume resultk−1 = (k − 1)!. Then we have
resultk = k · resultk−1 (according to code of the kth iteration)

= k · (k − 1)! (by induction hypothesis)
= k! (by definition of k!)

So, the invariant is true after k iterations.
This completes the inductive proof that the invariant holds after each it-

eration. Thus, after all n iterations, the value of the result variable will be
resultn = n!, as required to satisfy the postconditions.

