Schedule

CSE 1720

+ Lecture 15: The Observer Pattern
» Lecture 16: Event Dispatching

* Lecture 17: Model-View-Controller
* Lecture 18: Model-View-Controller

Lecture 15 » Lecture 19: Model-View-Controller
* Lecture 20: Input Validation
The Observer Pattern; Basic GUI Architecture « Lecture 21: Drawing Apps

* Lecture 23: Interactive Apps
» Lecture 24: Interactive Apps
» Lecture 25: Review/Recap

Goals/To do: Goals/To understand: Control Flow

+ Implement a simple GUI « understand the basic
architecture of event-driven
apps; distinguish from e control flow is the sequence of execution of instructions
sequential control flow in a program.

— Control flow is determined at run time by the input
data and by the control structures used in the
program.

* control structures such as "if" statements

» recognize and distinguish
among the following event
types: MouseMotion, Mouse,

Component, Window, * each thread has its own flow of control
WindowFocus . . .
— an application may make use of multiple
threads

« recognize role of JFrame in a
GUI; apply knowledge of call-
back mechanism to JFrame
rendering

Control Flow

* In the case of sequential control:
— Control starts are the first instruction in the main
method
— Control flows sequentially, from the current
instruction to the next one until the last one is
reached, at which point the program terminates.

Sequential Programs (1)

* Typical scenario:
— Prompt the user, thread blocks
— when input is provided, thread unblocks
— read input from keyboard
— Parse the input (in order to interpret the user’s action)
— Evaluate the result
— Generate output

— Continue until application determines it is time to
stop (or until user terminates application)

Control Flow

* there are two primary mechanisms for control
flow:
- sequential
— event driven

* the main difference between these is how the
thread react to events

- e.g., user input, disk space becomes full, network
connection is lost, ...

Sequential Programs (2)

* In sequential programs, control is held by the
application:
— the application decides when the user may perform input
actions

— application tells user whether it’s ready for more input
— user enters more input and it is processed

* Examples:
- all of the apps we have done so far

* The user is required to respond to the program

— Shouldn’t it be the other way around? Shouldn’t the program respond
to the user?

Event-driven Programs

 All communication from the user to the
application occurs via evernts
* An event is an action that happens:
— A mouse button pressed or released
— A keyboard key is pressed or released
— A window is moved, resized, closed, etc.
+ Code is set up and waiting to handle
these events

The thread is not blocked

What are Events?

* Examples:
— if the user clicks the mouse button in a component,
the component “fires” a mouse event
— if the user types text from the keyboard in a
component, the component fires keyboard events
* in both of these cases, the event is represented
by an object
— the app can query the object (via its accessors) to
determine
* the source of the event
¢ the coordinate of the mouse click

» which keys were pressed, whether the keys were masked
with the CAPS key

11

What are Events?

* Each component in an application is a

potential source of events
* When something happens, an instance of an
event object gets created by built-in Swing
code
— events are represented by objects

— the instance itself contains information that
identifies the source of the event

* An event always has a source

Terminology

* the component fires or dispatches an event

* an app listens for events

10

12

Event Listeners Terminology

* an event listener is a object that “gets connected” * a listener is registered on a component
to components that dispatch events
* an event listener should be connected to a component * a listener is an observer of a component

* an event listener specifies what happens in
response to events

ceg.,
— when the user clicks the mouse on a button, what

does this mean (save a file, bold the current word,
change the drawing tool, etc)

13 14
Interactive Applications Key Factoid
* Basicidea: * events are being generated continually
— the app consists of listeners and components whether anyone is listening to them or not

— the app registers its listeners on the components _ think of a radio station

— the app completes its set up and waits .
— when the user does something, the listeners invoke * the app does nOt. contro.l or 'determlne
the code that implements the response to the user whether event dispatching is turned on or
action,
/ off

— when this is completed, the app resumes waiting . the app does determine whether it will be

an observer of the events that are being

generated
15 16

* the last two steps are repeated continually until
the app is terminated

Types of Events

¢ There are two types of events: low-level and
semantic

* A low-level event is:
— a window-system occurrence, or

— alow-level input

* mouse button press, mouse button released, mouse
button click (pressed and released),

* mouse cursor enter, mouse cursor exit,
* mouse down, mouse up,
* key pressed, key released, key typed
* A semantic event is any occurrence that is not
a low-level event.

17

Java’s Event Class Hierarchy

A subset of Java’s Event Class
Hierarchy is shown here

See Java API for full hierarchy

‘ InputEvent ‘ ‘ WindowEvent ‘
b\douseEvenq ‘ KeyEvent ‘

19

Types of Events

User Action Event that Occurs
click a button ActionEvent
press Enter while in a text field ActionEvent
choose a menu item ActionEvent
close a frame (main window) WindowEvent
press a mouse button MouseEvent

(while the cursor is over a component)

move the mouse over a component MouseMotionEvent

component becomes visible ComponentEvent
component gets the keyboard focus FocusEvent

Basic Concepts

» To create an interactive application, your app
needs to ask the window manager for a
window

— this is the “top-level container”
— the three top level components are JFrame,
JApplet, and JDialog

* your app needs to place components inside the

top-level container

* your app needs to register listeners on the
components

18

20

Basic Concepts

The components will be placed in a hierarchy

the top-level container will be at the root of the
hierarchy

components are added to the top-level container
two types of components:

* atomic components are GUI widgets
- e.g., JComboBox, JButton, JLabel

* non-atomic components are “containers” that can
contain other components
- e.g,JPanel, JTabbedPane

all components are instances of JComponent

21

L15 Basic App

We will use a JFrame for our top-level
container.

We will place one component within it, which
will be a JPanel

To start, we will not register any listeners

23

What is a JFrame?

1.

2.

It is a window

It has window decorations, such as borders, a titlebar
and title, and buttons for closing and iconifying the
window

The style of these decorations is derived from the
“Look-and-Feel”

It is a top-level container

It has a content pane and a menu bar
* The menu bar is optional

It is the root of a containment hierarchy

22

Demo Example

» First, we look at GreenEllipsesPanel
* Next, we look at L15VeryBasicVersion
« Last, we look at L15App1l

24

