CSE 1720

Lecture 11
Exception Handling

Topics

+ exception handling — Chapter 11

Reminder

Midterm Exam
Thursday, Feb 16, 10-11:30
CLH J — Curtis Lecture Hall, Room J
will cover all material up to and including Tues Feb 14th

» Tues, Feb 7 — topic: exceptions

* Thurs, Feb 9 — Midterm overview, Recap, Review, Study
preparation

» Tues, Feb 14 —valentine’s day celebration of continued
coverage of the topic of exceptions

An exception is an object that represents
information about an error state that has
arisen to the VM

Examples of error states:

-attempting to perform an illegal
operation, such as:

input mismatch, divide by zero, invalid
cast, ...

Copyright
© 2006 Pearson

What is a clean exit?
What is a crash?

» A clean exit is when an app ends in a
controlled and orderly manner
output.println("Enter the first integer:");
— flush all output buffers int a = input.nextInt();
— complete all pending transactions output.println("Enter the second:");
— close all network connections int c = a / b;
—free up all used resources output.println("Their quotient is: " + c);

» A crash is a non-clean exit
— abrupt termination
—may be accompanied by error messages that

int b = input.nextInt();

do not originate from the program 5 © 2008 Pearson
hrowi ' “Th ” of '
Throwing exceptions rowers” of exceptions
* example L11AppQuotient demonstrates arithmetic » methods (as per the post condition)
Operation thrOWing an exception « arithmetic Operators
* example L11App01 demonstrates arithmetic operation — integer division, integer modulo
throwing an exception — not floating point division, floating point modulo

* example L11App02 demonstrates difference between int
and double quotient/division and modulo operation, in
terms of exception-throwing behaviours

“Legal” Issue
If an exception is thrown by an
implementer, was this part of its contract?

“Logistical” Issue
If an exception is thrown, what should the
client do about it?

Copyright
© 2006 Pearson

Recap

* “no precondition” means pre is true (sec 2.3.3)
— precondition is “the statement that the client should ensure is true
as a condition of using this service”
— if pre is true, then the client doesn’t need to do anything
+ “returns” and “throws” are parts of the post condition
substring

public String substring(int beginIndex)

Returns a new string that is a substring of this string. The substring begins with the character at the specified index and
extends to the end of this string.

Examples:

"unhappy"” .substring(2) returns "happy”
"Harbison".substring(3) returns "bison”
"emptiness”.substring(9) returns "" (an empty string)

Parameters:
beginIndex - the beginning index, inclusive.
Returns:
the specified substring.
Throws:
IndexOutOfBoundsException - if beginIndex is negative or larger than the length of this string object.

Recap

» implementers offers services in the form of utility and
non-utility classes

* we, as clients, make use of the services offered by
implementers

— utility classes are classes that cannot be instantiated; for utility
classes to be useful, their methods and/or fields should be static

— non-utility classes are classes that can be instantiated; the may
include both non-static and static methods and/or fields
» the “terms and conditions of use” for services are
described in the API
— pre conditions

— post condition (the specification of the return and/or the condition

under which an exception is thrown)
10

Ways to think about the “throws”
section of the API...

x WRONG
— Exceptions are thrown as punishment to a client for
violating the pre-condition.
— Thrown exceptions are like run-time errors: they are
bad and a sign that something went wrong.

v CORRECT
— The API does not (should not) specify what happens if
the precondition is not met.
— When the API specifies that an exceptions is thrown
in a particular scenario, this is part of the post
condition

12

There are three sources that can lead to

exceptions:

Copyright
© 2006 Pearson

Enter the first integer:
8

Enter the second:
[

Exception in thread "main"
java.lang.ArithmeticException: / by zero

at Quotient.main(Quotient.java:16)

In this case:
- The error source is the end user.
- The incorrect operation is invalid

- The exception was not caught

Copyright
© 2006 Pearson

» An error source can lead to an operation

* An operations may be valid or

* An operation throws an

* An becomes a unless caught
Programmer,
End User, or II II
Environment Error

Error
» Valid .
Incorrect Runtime
ion? Exception
Operations Operation? no Ld I
Copyright

© 2006 Pearson

Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException:

[Tyoe [N Stock trace [N Vessage |

Copyright
© 2006 Pearson

, the client, delegate to method
+An invalid operation is encountered in
can either or
«If A handled it, no one would know

*Not even the API of /A would document this
*Otherwise, the exception is delegated to
» We can either or
«If we handle it, need to use try-catch
-Otherwise, we delegate to the VM

+ The VM’s way of handling exceptions is to cause a
runtisneerror.

© 2006 Pearson

Note:
+ Applies to all (components and client)

* The API must document any back
delegation

* It does so under the heading: “

Copyright
© 2006 Pearson

, the client, delegate to method
delegates to method
*An invalid operation is encountered in
can either or
«If = handled it, no one would know
*Not even the API of & would document this
-Otherwise, the exception is delegated to
can either or

«If A handled it, no one would know; otherwise it
comes to us...
+ We cap-either or

© 2006 Pearson

int slash = str.indexOf("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);

output.println("Left substring: " + left);
output.println("Right substring: " + right);

Copyright
© 2006 Pearson

int slash = str.indexO0f("/"); String substring(int beginIndex, int endIndex)
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

Parameters:

Returns:

java.lang.IndexOutOfBoundsException:

String index out of range: -1 Throws :

IndexOutOfBoundsException

The trace follows the delegation from line 1480 within
substring to line 14 within the client.

Copyright Copyright
(? _2006_ Peﬁrson) (EJ _2006_ Pearson)
try
{ ...
code fragment int slash = str.indexOf("/");
... String left = str.substring(0, slash);
} String right = str.substring(slash + 1);
catch (SomeType e) output.println("Left substring: " + left);
{ output.println("Right substring: " + right);
e ' }
exception handler catch (IndexOutOfBoundsException e)

o o o {
} output.println("No slash in input!");

program continues }
output.println("Clean Exit."); // closing

Copyright Copyright
© 2006 Pearson © 2006 Pearson

Catching exceptions

* example L11App01 demonstrates arithmetic operation
throwing an exception

* example L11App02 demonstrates difference between int
and double quotient/division and modulo operation, in
terms of exception-throwing behaviours

* example L11App03 demonstrates basic try-catch block

25

Copyright
© 2006 Pearson

Copyright
© 2006 Pearson

Copyright
© 2006 Pearson

try
{

}
catch (Type-1 e)
{ .

}

catch (Type-2 e)
{

}

czzé.{:ch (Type-n e)
{ .
}

program continues

int slash = str.indexO0f("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
int leftInt = Integer.parseInt(left);
int rightInt = Integer.parselnt(right);

int answer = leftInt / rightlInt;
output.println("Quotient = " + answer);
}

catch (?)
{

}

Copyright
© 2006 Pearson

’ Object ‘

I

’ Throwable ‘

1
| |

’ Error ‘ ’ Exception ‘

’ VirtualMachineError ﬂ RuntimeException

’ AssertionError ?] IOException

’ AWTError

|

Copyright
© 2006 Pearson

_] PrinterException|

:

catch (IndexOutOfBoundsException e)

{ output.println("No slash in input!");
iatch (NumberFormatException e)

{ output.println("Non-integer operands!") ;
;atch (ArithmeticException e)

{ output.println("Cannot divide by zero!");

}

output.println("Clean Exit."); // closing

Copyright

© 2006 Pearson

They all inherit the features in

Can create them like any other object:

And can invoke methods on them, e.g.
) , etc.

They all have a

Creating one does not simulate an exception. For
that, use the keyword:

Copyright

© 2006 Pearson

for (boolean stay = true; stay;)

{
try

{
// as before
if (leftInt < 0) throw(??);

output.println("Quotient = + answer);
stay = false;

}

// several catch blocks

Copyright Copyright
© 2006 Pearson © 2006 Pearson

for (boolean stay = true; st * App programmers can avoid any RuntimeException
{ through defensive validation

t
{ry ° * Hence, we cannot force them to handle such

// as before ° exceptions

if (leftInt < 0) throw@

« Other exceptions, however, are "un-validatable", e.g.
output.println("Quotient = " + answer); diskette not inserted; network not available...

stay = false; « . .
Y + These are exceptions

}
/¥ several catch blocks - App programmers must their existence

} ®

* How do we enforce that?
+ The compiler ensures that the app either handles
checked exceptions or use “ ” in its main.

Copyright Copyright
© 2006 Pearson © 2006 Pearson

+ Thanks to the compiler, exceptions are never
"unexpected"; they are trapped or acknowledged

exceptions (often caused by the end user)
must be avoided and/or trapped

relies on validation to detect
invalid inputs

relies on exceptions
+ Both approaches can be employed in the same app

+ Logic errors are minimized through early exposure, e.g.

strong typing, assertion, etc.
Copyright Copyright
(E) _2006_ Peérson) (? _2006_ Pearson)

