CSE 1720

Lecture 10
Graphics and Fonts

The Basics

* draw(Shape)
— our go-to method for drawing shape primitives

* drawString(String, int, int)

— these will be our go-method for drawing strings

— the version using AttributedCharacterIterator Will
be covered, time permitting

— E.g., L10App01

Topics

« fonts, string formatting

How is Font information
Encapsulated...

* e.g.,, L10App02

— information about font face, font style, font
size is encapsulated in the Font object

— refer to the Font API

Font Concepts

font family or typeface refers to a typographic design

across several faces, e.g., Helvetica, Courier

— members within the family share a common design by vary in
terms of weight (bold/not bold), orientation (italics/non italics),
width (condensed/non condensed)

font refers to a specific member of a font family

— Times ltalic

— once upon a time (in the era of metal types), font also referred to
point size

— the Font API refers to this as font name

font style indicates plain, bold, italic, bold+italic

font size is more complicated...

Typography Concepts

character refers to the smallest semantic unit of a
language
glyph refers to the specific form characters can take on
in a font face

e.g.,
character: the unicode character \u0041
corresponding glyphs: A A4 A

to do typographic layout, glyphs for the characters of a
given string must be selected and positioned

— in older times, this was done manually

— nowadays, this is done automatically or semiautomatically

Font Concepts

point size refers to the size of the font,
— 1 ptis approx 1/72 of an inch; a 72 pt font is approx 1” high

what does point size actually mean, given that the
characters are all different heights?

for this, we need some basic font terminology

Font Concepts

all fonts have a baseline, midline (or mean line), and cap
height

cap height is the height of the capital letters that have “flat”
tops, as opposed to capital letters that have “round” tops.
— Round capital letters may overshoot the cap height
midline is halfway from the baseline to the cap height

Xx-height is the distance between the baseline and the midline
— usually the height of an *x’ character

ascent ascender height

cap height

mean line median I x-height

baseline

descent descender height 8

Font Concepts

« ascenders are the portion of a glyph that extends above
the midline

« descenders are the portion of a glyph that extends below
the baseline

ascent ascender height

cap height

mean line median x-height

baseline

descent descender height ;De>cen1 l

Pointing out an interesting
phenomenon

* INnL10App03

—a duplicate of L10App02
+ except we exchange the order of the show () and
getGraphics2D() method invocations

— observe that we can show the Picture
object either before or after we mutate the
graphics2D object

—the rendered text has a different appearance,
yet the font object is the same

— what explains this?
11

Font Concepts

« the em square is an invisible box which is typically a bit
larger than the distance from the tallest ascender to the
lowest descender

* point size indicates the size of the em square

ascent ascenderheigt | e [[T}TTT773

cap height

mean line median i Body EM
x-height ‘
baseline | | ¥
descent descender height ;Desxzem
10

Rendering Hints Impact the
Appearance of Fonts

* In L10App04 we extract all of the
rendering hints
— this requires us to use a Map abstract data
type
—how is a Map different from a Collection?
(foreshadow to Ch 10)

12

getGraphics2D() before pict is shown

Fractional metrics enable key: Default fractional text metrics mode
Global rendering quality key: Default rendering methods

Global antialiasing enable key: Default antialiasing rendering mode
Stroke normalization control key: Default stroke normalization
Text-specific LCD contrast key: 140

Text-specific antialiasing enable key: Default antialiasing text mode

getGraphics2D() after pict is shown

Fractional metrics enable key: Default fractional text metrics mode
Global rendering quality key: Default rendering methods

Global antialiasing enable key: Default antialiasing rendering mode
Stroke normalization control key: Default stroke normalization
Text-specific LCD contrast key: 140

Text-specific antialiasing enable key: Antialiased text mode

13

Aliasing, Antialiasing

* up to a certain point in time, most computers were only
capable of displaying ‘aliased’ (bitmapped) text on
screen

+ pixels either on or off, making type look very jagged on
the screen

handiwork

aliased (bitmap

15

Graphics2D and Antialiasing

» Graphics2D has various rendering hints
— one of these hints concerns the type of antialiasing
— there are various versions available

« the difference is the visual presentation was because
different antialiasing schemes were in effect

— when we obtain the Graphics2D object after the Picture object is
shown, then one of the Graphics2D object’s rendering hints gets
modified

» so what is the antialiasing?

14

Aliasing, Antialiasing

+ Anti-aliasing is a method to give the illusion of smooth
outlines through the use of varying levels of gray
surrounding the outline of the character

» Works well at larger sizes, not so well at smaller sizes.
— smaller sizes = fuzzy outline, results in eyestrain and fatigue
— sometimes turned off below a preferred point size

handiwork

aliased (bitmap)

handiwork

anti-aliased (grayscale)

16

Fonts

* suppose a client wants to specify a different font

 refer to Font constructor
Font (String name, int style, int size)

r

* s0 what are the possible font faces?
— physical fonts
— logical fonts

font face name or a font family name

17

Possible Font Faces

+ which fonts are installed on a particular platform?
— see L10App05

19

Possible Font Faces

+ physical fonts

— actual font libraries containing glyph data and tables to map from
character sequences to glyph sequences

— font libraries need to make use of a font technology, such as
TrueType or PostScript Type 1
* logical fonts:
— defined with Java SE
— available on any Java platform

— can be thought of as aliases for some underlying font that has
the properties implied by its name.

— five are defined: Dialog, Dialoglnput, Monospaced, Serif,
SansSerif

18

Defining and Using Another Font
Face

* see L10App06

20

Typography Concepts

« other slides... « consider the following task: given some characters,
which glyphs should be employed to represent them?

« This is accomplished by typesetting software (e.g.,
LaTeX) or desktop publishing/wordprocessor)

« A goal is to achieve a visually pleasing appearance and
to avoiding situations that are unattractive or reduce
legibility

— there are many possible problems

— to sample these, let us consider three common remedies:
« kerning
« tracking
« use of ligatures

21 22

Graphics Device
Draw a box around a string

* see L10App07 + screens, printers or image buffers can be the destination
of Graphics2D drawing methods.
» Each graphics device has one or more
GraphicsConfiguration objects associated with it.

— different drawing modes or drawing capabilities (such as
different resolutions or colour depths)

« These objects specify the different configurations in
which the GraphicsDevice can be used.

« which fonts are installed on a particular platform?
— installed means that the VM can make use of them

23 24

Graphics Environment

* a conceptualization used by Java to represent the
collection of GraphicsDevice objects and Font objects
available to a Java(tm) application on a particular
platform.

« a which fonts are installed on a particular platform?
— installed means that the VM can make use of them

25

