
CSE 1720	

Lecture 10	

Graphics and Fonts	

Topics 
	

•  fonts, string formatting#

2	

The Basics 
	

•  draw(Shape)!

–  our go-to method for drawing shape primitives#

•  drawString(String, int, int)!
•  drawString(AttributedCharacterIterator, int, int)!

–  these will be our go-method for drawing strings#
–  the version using AttributedCharacterIterator will

be covered, time permitting#
–  E.g., L10App01#
#

3	

How is Font information
Encapsulated…	

•  e.g., L10App02!

–  information about font face, font style, font
size is encapsulated in the Font object#

–  refer to the Font API#

4	

Font Concepts 
	

•  font family or typeface refers to a typographic design

across several faces, e.g., Helvetica, Courier#
–  members within the family share a common design by vary in

terms of weight (bold/not bold), orientation (italics/non italics),
width (condensed/non condensed)#

•  font refers to a specific member of a font family#
–  Times Italic#
–  once upon a time (in the era of metal types), font also referred to

point size #
–  the Font API refers to this as font name #

•  font style indicates plain, bold, italic, bold+italic#
•  font size is more complicated…#

5	

Font Concepts 
	

•  point size refers to the size of the font, #

–  1 pt is approx 1/72 of an inch; a 72 pt font is approx 1” high#
•  what does point size actually mean, given that the

characters are all different heights?#
•  for this, we need some basic font terminology#

6	

Typography Concepts 
	

•  character refers to the smallest semantic unit of a

language#
•  glyph refers to the specific form characters can take on

in a font face#
•  e.g.,  

character: the unicode character \u0041  
corresponding glyphs: A A A A!

•  to do typographic layout, glyphs for the characters of a
given string must be selected and positioned #
–  in older times, this was done manually#
–  nowadays, this is done automatically or semiautomatically#

7	

Font Concepts 
	

•  all fonts have a baseline, midline (or mean line), and cap

height #
•  cap height is the height of the capital letters that have “flat”

tops, as opposed to capital letters that have “round” tops. #
–  Round capital letters may overshoot the cap height#

•  midline is halfway from the baseline to the cap height#
•  x-height is the distance between the baseline and the midline#

–  usually the height of an ‘x’ character#

8	

Font Concepts 
	

•  ascenders are the portion of a glyph that extends above

the midline#
•  descenders are the portion of a glyph that extends below

the baseline#

9	

Font Concepts 
	

•  the em square is an invisible box which is typically a bit

larger than the distance from the tallest ascender to the
lowest descender#

•  point size indicates the size of the em square!

10	

Pointing out an interesting
phenomenon	

•  In L10App03!

– a duplicate of L10App02#
•  except we exchange the order of the show() and
getGraphics2D() method invocations#

– observe that we can show the Picture
object either before or after we mutate the
graphics2D object#

–  the rendered text has a different appearance,
yet the font object is the same#

– what explains this?#
11	

Rendering Hints Impact the
Appearance of Fonts	

•  In L10App04 we extract all of the

rendering hints#
–  this requires us to use a Map abstract data

type#
– how is a Map different from a Collection?

(foreshadow to Ch 10)#
!

12	

getGraphics2D() before pict is shown

Fractional metrics enable key: Default fractional text metrics mode!
Global rendering quality key: Default rendering methods!
Global antialiasing enable key: Default antialiasing rendering mode!
Stroke normalization control key: Default stroke normalization!
Text-specific LCD contrast key: 140!
Text-specific antialiasing enable key: Default antialiasing text mode!
!
!
getGraphics2D() after pict is shown#
!
Fractional metrics enable key: Default fractional text metrics mode!
Global rendering quality key: Default rendering methods!
Global antialiasing enable key: Default antialiasing rendering mode!
Stroke normalization control key: Default stroke normalization!
Text-specific LCD contrast key: 140!
Text-specific antialiasing enable key: Antialiased text mode!
!

13	

Graphics2D and Antialiasing  
	

•  Graphics2D has various rendering hints#

–  one of these hints concerns the type of antialiasing#
–  there are various versions available#

•  the difference is the visual presentation was because
different antialiasing schemes were in effect#
–  when we obtain the Graphics2D object after the Picture object is

shown, then one of the Graphics2D object’s rendering hints gets
modified#

•  so what is the antialiasing?#

14	

Aliasing, Antialiasing  
	

•  up to a certain point in time, most computers were only

capable of displaying ‘aliased’ (bitmapped) text on
screen#

•  pixels either on or off, making type look very jagged on
the screen#

15	

Aliasing, Antialiasing  
	

•  Anti-aliasing is a method to give the illusion of smooth

outlines through the use of varying levels of gray
surrounding the outline of the character#

•  Works well at larger sizes, not so well at smaller sizes.#
–  smaller sizes  fuzzy outline, results in eyestrain and fatigue#
–  sometimes turned off below a preferred point size#

16	

Fonts 
	

•  suppose a client wants to specify a different font#
•  refer to Font constructor 
Font(String name, int style, int size) !

 
#
•  so what are the possible font faces?#

–  physical fonts#
–  logical fonts#

17	

font face name or a font family name	

Possible Font Faces 
	

•  physical fonts#

–  actual font libraries containing glyph data and tables to map from
character sequences to glyph sequences#

–  font libraries need to make use of a font technology, such as
TrueType or PostScript Type 1#

•  logical fonts: #
–  defined with Java SE#
–  available on any Java platform #
–  can be thought of as aliases for some underlying font that has

the properties implied by its name.#
–  five are defined: Dialog, DialogInput, Monospaced, Serif,

SansSerif#

18	

Possible Font Faces 
	

•  which fonts are installed on a particular platform?#

–  see L10App05!
#

19	

Defining and Using Another Font
Face	

•  see L10App06!

#

20	

•  other slides…#

21	

Typography Concepts 
	

•  consider the following task: given some characters,

which glyphs should be employed to represent them?#
•  This is accomplished by typesetting software (e.g.,

LaTeX) or desktop publishing/wordprocessor)#
•  A goal is to achieve a visually pleasing appearance and

to avoiding situations that are unattractive or reduce
legibility#
–  there are many possible problems #
–  to sample these, let us consider three common remedies:#

•  kerning#
•  tracking#
•  use of ligatures#

22	

Draw a box around a string	

•  see L10App07!

#

23	

Graphics Device  
	

•  screens, printers or image buffers can be the destination

of Graphics2D drawing methods.#
•  Each graphics device has one or more

GraphicsConfiguration objects associated with it. #
–  different drawing modes or drawing capabilities (such as

different resolutions or colour depths)#
•  These objects specify the different configurations in

which the GraphicsDevice can be used.#
•  which fonts are installed on a particular platform?#

–  installed means that the VM can make use of them#
#

24	

Graphics Environment 
	

•  a conceptualization used by Java to represent the

collection of GraphicsDevice objects and Font objects
available to a Java(tm) application on a particular
platform.#

•  a which fonts are installed on a particular platform?#
–  installed means that the VM can make use of them#
#

25	

