
CSE 1720	

Lecture 8	

Inheritance, II	

Announcements:  
"
•  Lectures 7-10 assigned reading: Ch 9, JBA"

•  Preparation for Labtes#2: "
–  you will be asked to construct a generic collection of
Shape objects "

–  you will be asked to iterate over the elements of the
collection"

–  you will be asked to implement a condition on the
basis of the type of the elements"
•  e.g., iterate over the Shapes, draw each one as an unfilled

shape except the Ellipse2D objects, which should be drawn
as filled" 2"

Goals/To do: 
"
•  Good practices for the

declaration and instantiation of
objects within a class hierarchy 
"

•  Take advantage of
polymorphism when desiging
apps"

•  Create, modify, and iterate
over a collection of Shapes;
use services of Graphics2D
for manipulating and/or
operating upon the shape
objects!

Goals/To understand:"
 "
•  understand a class in terms of

its position within a hierarchy "
•  understand the Object class

in terms of its position at the
top of the class hierarchy!

•  recognize and understand
subclass features from their
APIs"

•  distinguish between early and
late binding"

•  understand and distinguish
among non-primitive types
defined by: classes, abstract
classes and interfaces."

•  understand generic collections  
"

3	

Recap  
	

•  the methods defined in a child class fall under the

following categories:"
–  new methods; methods defined in the child class only and not

defined in parent"
–  inherited methods; methods defined in the parent class and thus

also available to child instances"
–  overridden methods; methods defined in the parent class and

also defined in the child class; the child class provides another
version of the method functionality that overrides the parent’s
method functionality"

4	

Binding  
	

•  Binding refers to the process of resolving an expression."
•  resolve ≊ locate the referent of an identifier "

–  recall an identifier means a variable, method or class name"
–  the referent means the thing that the identifier stands for"

•  the referent of a variable is its value "
•  the referent of a class name is a class definition (the class body)"
•  the referent of a method signature is a method body (the method name

alone is insufficient)"

5	

Early Binding  
	

•  consider the case of the statement  
r.m(…)!

•  the compiler needs to resolve this expression:"
–  what is the declared type of r? this is the referent class!
–  what is the signature of the invoked method? "
–  find the signature in the referent class definition!

•  same method name"
•  same number of parameters"
•  parameters of the same type or higher in the hierarchy"

–  if multiple target methods found, choose the method that
requires the least amount of promotion!

–  generate bytecode, stipulate the signature in the bytecode!

6	

sec 3.1.3,	

sec 9.2.2	

Late Binding  
	

•  consider the case of the bytecode corresponding to the

statement: 
r.m(…)!

•  the VM needs to resolve this expression:"
–  what is the class of the object to which r refers? this is the

referent class!
–  what does the bytecode say is the signature of the invoked

method? "
–  find this signature in the referent class definition"

•  the VM will always find a matching method!
•  the compiler’s early binding ensures that at least one matching method can

always be found (that of the parent class)"
•  VM needs to resolve parameters and pass them to the matching method"

7	

sec 9.2.2	

Early Binding (Compiler)!
–  what is the declared type of
r?  
"

–  what is the signature of the
invoked method?  
 
 
!

–  is the target method found
in the type definition (class
definition)?"
•  if multiple targets

methods found, choose
the method that
requires the least
amount of promotion"

generate bytecode, stipulate
the signature in the bytecode!

Late Binding (VM)!
–  what is the class of the

object to which r refers?  
"

–  what does the bytecode
say is the signature of the
invoked method?  
 
"

–  find that target method in
the class definition, resolve
parameters and pass them
to the matching method"

8	

Exercise  
	

•  let’s revisit an example that shows how early/late binding

can resolve to different referents"
•  L08App01!

9	

Exercise  
	

•  let’s consider the case of the method
isSimilar(CreditCard), which is defined in
CreditCard!

•  it determines similarity simply on the basis of card
balance (not name, number, issue or expiry dates)"

•  L08App02!

•  let’s consider a situation in which early binding requires
promotion!

•  L08App03!

10	

Exercise  
	

•  let’s consider the case of the method
isSimilar(RewardCard), which is defined in
RewardCard!

•  it determines similarity simply on the basis of card
balance and points balance (not name, number, issue or
expiry dates)"

•  L08App04!

•  let’s consider a situation in which early binding does not
require promotion, but late binding does!

•  L08App05!

11	

Abstract classes and Interfaces 
	

•  abstract classes and interfaces define types!
•  abstract classes and interfaces are not allowed to have

constructors; only their children classes"
•  for an instance, need to use:"

–  a factory method"
–  constructor from a child class"

12	

Abstract classes vs. Interfaces 
	

•  methods:"

–  an abstract class can implement methods which can then be
inherited by all children classes"

–  interfaces can stipulate method, but each child class provide its
own implementation"

•  parenthood:"
–  a child class can have only one parent (either an abstract class

or regular class), as defined by “extends”"
–  a child class can implement as many interfaces as needed"

13	

Revisit Graphics2D Drawing  
	

"

14	

Ellipse2D.Double ellipse = new Ellipse2D.Double(DIM / 2, DIM / 2, !
! ! ! ! ! ! !DIM / 10, DIM / 10);  

!
Ellipse2D ellipse = new Ellipse2D.Double(DIM / 2, DIM / 2, !

! ! ! ! ! ! !DIM / 10, DIM / 10);!
!
RectangularShape ellipse = new Ellipse2D.Double(DIM / 2, DIM / 2, !

! ! ! ! ! ! !DIM / 10, DIM / 10);  
!
Shape ellipse = new Ellipse2D.Double(DIM / 2, DIM / 2, !

! ! ! ! ! ! !DIM / 10, DIM / 10);!
!

Any of these declarations are
syntactically correct.	

Design-­‐‑wise, which would be
best? 	

Graphics2D Drawing  
	

"

15	

•  Design-wise, declare variables as “high up” in the class
hierarchy as possible  
!

•  abstract away as much detail as possible !
!
•  this will serve to modularize your app!

Generic Collections  
	

•  we will now start the topic of generic collections!
•  ref: 9.3.3, which we will cover in more detail on

Tuesday"
•  approach:"

–  review the concept of a collection!
–  introduce the concept of a generic collection (aka a

parameterized collection)"
–  examine two examples of parameterized collections"

16	

The Forest Gump way of
defining a collection"

17"

A collection is what a collection does.!
 !
Does it have elements that I can traverse?!
Does it let me add elements?!
Does it let me remove elements?!
Does it tell me its size?!

!Then it is a collection.*"
"
*a collection does a few other things, but we will talk about these later"

Collections, Generics 
	

•  The hypothetical class Bag<T> defines a generic

collection (aka a parameterized type)."
•  Bag is generically a collection"

–  as such, it has elements"
–  what is the type of these elements?  

with generic collections, one commits to the element
type at the time of instantiation"

18	

Collections, Generics 
Example	

•  the following uses a hypothetical class Bag<T> to define a

generic collection  
 
Bag<CreditCard> bag = new Bag<CreditCard>();!
–  we commit to the elements of bag being CreditCard objects"
–  the signature of the add method becomes add(CreditCard)!
–  the generic signature of the add method was add(T)!

"
•  Here are some actual declarations/instantiations: 
 
Set<CreditCard> set = new HashSet<CreditCard>();  
List<CreditCard> list = new ArrayList<CreditCard>();!

19	

Collections, Generics 
Example	

•  Here are some actual declarations/instantiations: 
 
Set<Shape> set = new HashSet<Shape>();  
List<Shape> list = new ArrayList<Shape>();!

•  What types of objects could we add to these collections?"
•  eg. L08App06!
•  For the labtest, you will be asked to construct a generic

collection of Shape objects and iterate over them. You will
be asked to implement conditional behaviour (such as draw
only the Ellipse2D objects, or draw some objects as filled
and others an unfilled)"

20	

