CSE 1720

Lecture 6

Aggregation, Graphics IV

Goals/To do:

How to create, copy, and
delegate to aggregates

— example aggregates: Pixel,
Picture, Graphics2D

Create, modify, and iterate
over collections

Implement traversal over a
collection

Implement search within a
collection

Use services of Graphics2D
for drawing

Goals/To understand:

recognize aggregates from
their APIs

characterize and distinguish
between two traversal
techniques

distinguish between aliases,
shallow copies, and deep
copies of aggregrates

understand the characteristics
of the “current settings”
graphical model

Announcements:

* Lectures 7-10 assigned reading: Ch 9, JBA

Today’s Topic

+ Issues with making a copy of an aggregate

The Aggregation Relationship

A class C is said to be an aggregate if and only if one of
its attributes is an object reference (say of type T)
Aggregation is the name of the relationship between ¢
and T.

— an object of type C HAS-A object of type T

— the object of type T is called the aggregated part

Key observation:

— itis possible that the object of type T can be may have a
different lifetime of the object of type C

We will demonstrate this next...
(but to do this we must first explain the stock and
Investment classes)

The class Stock

When constructing a Stock instance, the client must
specify the two-character symbol.

The stock class’ getName () accesses the name of the
company that corresponds to the stock’s two-character
stock exchange symbol:

ALPHA of BRAVO Company
Alpha of Bravo Company

Whether the name is upper-case or camel-case, this is
determined by the boolean flag titleCaseName

The attribute is public and static

See L.0O6App01.java 7

The class Stock

We will use the stock class from type.jar for this
example

A public company is a company that offers its stock/
shares for sale to the general public, typically through a
stock exchange

A public company has a full name and is represented by
a two-character symbol

— e.g., name: “Alpha Bravo Co.”, symbol: “.AB”

At any given point in time, the company’s shares have a
selling price.

We use the class stock to encapsulate a single share

The class Stock

The Stock class’ toSstring() produces a “nice” string
representation consisting of something like:
.AB*ALPHA of BRAVO Company

.AB:ALPHA of BRAVO Company

.AB+ALPHA of BRAVO Company

.AB ALPHA of BRAVO Company

.AB#ALPHA of BRAVO Company

.AB.ALPHA of BRAVO Company

The character is red is called the delimiter

The client can specify the character to be used for this
delimiter
See L06App02. java

The class Stock

* The stock class’ getPrice () retrieves the most-

recently fetched version of the price. Upon instantiation,

the current price is fetched.

* The method refresh () will connect to the Stock
Exchange server and fetch the current version of the
price

The class Investment

* The Investment class represents the purchase of a
certain number of shares at a certain price.

* The book value of an investment is the cost of the
shares multiplied by the number of shares

— If we purchase 10 shares of the Alpha of Bravo Co. at $100, the

book value is $1,000

+ Investment is an aggregate, its aggregate part is a Stock

object

l type::lib::Investment)()—1{ type::1lib::Stock ‘

11

UML Diagram

type :: lib :: Stock

-price : double

+name : String

-symbol : String
+delimiter : char
+titleCaseName : boolean

Stock(String)

+getName(): String

+getPrince() : double
+getSymbol(): String
+setDelimiter(char): boolean
+setSymbol() : void

+refresh () : void

+toString(): String

UML Diagram

type :: lib :: Investment

-theShare : Stock
-numShares : int
-bookvValue : double

Investment (Stock, int, double)
+getBookValue() : double
+getQty() : int

+getStock() : Stock

+setBookValue(double) : void

+toString(): String

10

12

The class Investment

« If the value of the Alpha of Bravo Co. shares change,
then our investment will generate profit/loss

— E.g., If we purchase 10 shares of the Alpha of Bravo Co. at
$100, the book value is $1,000

— if the company is now valued at $150/share, then our investment
has given us a profit of $500

— $500 = $1500 (current value) - $1000 (book value)

* See L06App03.java

13

This leads to another issue...

» There are two possible copies of an
investment:
— shallow copy
— deep copy

» With a shallow copy, we will have two
different investment objects, but they will
both share the same aggregated parts

* see LO6App05.java

15

Back to our main point...

* it is possible that the object of type T can
be may have a different lifetime of the
object of type C

* see LO6App04.Jjava

What is a shallow copy?

* object B is a shallow copy of aggregate A
when:

— A and B are different objects with the same
state, and

— any aggregated parts are shared.

+ a change to the aggregated part of object
A will change the state of object B
—see LO6App05.java

14

16

What is a deep copy?

* object B is a deep copy of aggregate A if:

—A and B are different objects with the same
state.

—A and B are truly different objects, each with
its own copies of any aggregated parts

* see LO6App06.java

17

Follow-up...

* This material is covered in detail in section

8.1.3
 ensure you read carefully and understand

 your understanding of the concepts of
aggregation, shallow copies, and deep

copies will be examined on the first written

test.

18

