
CSE 1720	

Lecture 3	

Aggregation, Graphics	

Announcements:  
"
•  labs this week:"

–  preparation for labtest #1; sample problems/tasks"
–  guided demo: gesture tracking (MaxMSP)"

•  labs next week:"
–  labtest #1"
–  given a description of some shape- and string-based

images, implement the drawing using the services of
Graphics2D!

–  analogous to labtest #2 from cse1710 (which was
based on pixel-based image modification)!

2"

Goals/To do: 
"
•  How to create, copy, and

delegate to aggregates"
–  example aggregates: Pixel,

Picture, Graphics2D!

•  Create, modify, and iterate
over collections!

•  Implement traversal over a
collection!

•  Implement search within a
collection"

•  Use services of Graphics2D
for drawing !

Goals/To understand:"
 "
•  recognize aggregates from

their APIs 
!

•  characterize and distinguish
between two traversal
techniques 
	

•  distinguish between aliases,
shallow copies, and deep
copies of aggregrates  
"

•  understand the characteristics
of the “current settings”
graphical model  
"

3	

This module:  
"
•  2-3 lectures"
•  background material: "

– Ch 8, JBA"
– Excerpts from other sources"
•  on website if/when they arise"

– CSE1710 F11 Notes: Lectures 8, 9"

4"

Quick Review:  
Basic Anatomy of a Class	

•  a class has members (aka “features”):"

–  methods"
–  attributes"

•  features can be private or public"
–  the attributes that clients can access are called fields"

•  method signatures must be unique"
–  not only the method names, but also the parameter list "
–  signature does not include the return"

•  attribute names must be unique"
•  When you use the services of a class, the compiler

checks:"
–  does the signature (or the attribute name) match what is in

the class definition?" 5	

RQ2.1-2.10" Quick Review:  
Method vs Attribute	

6	

RQ2.1-2.10"

What is a method? "
•  performs some action"
•  has a signature and

return"
 
"
"
"
"
var.methodName()"
Classname.methodName()"

What is an attribute? "
–  holds data "
–  has a name and a type"
–  declared and initiatialized

in the class defn"
"
"
"
"
var.attributeName"
Classname.attributeName"
"

"

0 or more parameters,"
type compatibility must be
assured"

NO parameters"

range of possibilities?"

Recap: 
"
•  The Picture class encapsulates information about and

operations on digital image files that contains pixel data"
•  Picture objects can be instantiated from files that

contain pixel data (e.g., jpeg)."
•  We can use the services of File or JFileChooser so

that our app can interface with the file system"
•  Graphical apps must work alongside the operating

system’s window manager and the platform’s graphics
hardware"

7"

Recap: The Picture class 
"

8"

Picture!

Picture(String)!
⋮!
+explore(): void!
+show(): void!
+getPath(): String!
+toString(): String!
+getWidth(): String!
+getHeight(): String!
⋮!
+getPixel(int, int): Pixel!
+getPixels(): Pixel[]!
+blacken(int): void!
⋮ 	

+repaint(): void!

The string parameter
must correspond to a
pathname that exists on
the file system and that
contains pixel data"
(e.g., a jpg file)!

The Picture class encapsulates information about and
operations on digital image files that contains pixel data"

Recap: The repaint() method  
"
•  consider myPict.repaint()!

–  this marks the picture object as being in need of being
redrawn!

–  the method nor the app does NOT actually paint the
picture itself."

•  Rather, the Picture class's repaint method does the
following:"
–  marks the picture as being in need of being redrawn

(think of a boolean flag!)"
–  prompts the window manager to "survey" all of the

windows. "

9"

Recap: The repaint() method  
"
•  The window manager, when encountering a window that

is marked as being in need of being repainted, will
repaint the window. "

•  It does so by consulting the window about *what* should
be drawn. "

•  This is an example of abstraction – the implementation
of actual graphical rendering and the specificaion of
what needs to be drawn have been abstracted away
from each other. "
–  This design implements a separation of concerns"
–  This design implements abstraction by delegation"

10"

Recap: 
"
•  To manipulate Picture objects, we modified the

object’s pixels."
•  To manipulate a Pixel object, we modified the object’s

R, G, B values"

•  E.g., L03App01!

11"

Pixel!

Pixel(DigitalPicture, int, int)!
⋮!
+getRed(): int!
+setRed(int): void!
<ditto for Green, Blue>"
⋮!
+getColor(): Color!
+setColor(Color): Color!
⋮!
+getRed(int): int!
+getGreen(int): int!
+getBlue(int): int!
⋮ !

What is an aggregate?  
"
•  So L03App01 demonstrated the manipulation of a
Picture object, via the modification of the object’s
pixels."

•  To manipulate a Pixel object, we modified the object’s
Color!

•  What do we take away from this?"
–  …that any Pixel object has, as one of its attributes, a Color

object"
•  The situation: a class has as one of its features an

attribute that is non-primitive*!

–  recall goal: “recognize aggregates from their APIs”"
–  * excluding strings!

12"

Illustrating Aggregation using UML  
"
•  The Pixel object HAS-A Color object (as one of its

attribute values)"
•  It has one such Color object, hence the number 1 in the

UML diagram below"

13"

img::Pixel! java::awt::Color!
1!

Illustrating Aggregation using UML  
"
•  To manipulate Picture objects, we modified the

object’s pixels."
•  The Picture object HAS-A collection of Pixel objects

(as one of its attribute values)"
•  Since we don’t know the size of the collection, we use

the asterisk * in the UML diagram below"

14"

img::Picture! img::Pixel!*	

Illustrating Aggregation using UML  
"
•  The HAS-A relationship can stand in a “chain”"
•  multiplicity is indicated!

15"

img::Picture! img::Pixel!*	
 java::awt::Color!
1!

An object can “hide” its parts 
"
•  An aggregate (by definition) has (at least one) attribute

that is a non-primitive value"
•  Is that class required to provide an accessor for that

attribute?"
–  No. It is up to the designer to define the methods of a class "
–  However, it usually makes sense to provide some sort of access"

•  What if the class wants to provide “read-only” access to
the aggregate part? "
–  e.g., clients can examine the state of the aggregate, but should

not be allowed to change the state."
•  What is the strategy for this? "

–  topic of next lecture. Read Chapter 8 prior to L04."
16"

1!

Traversal of Collections 
"
•  Indexed traversal"
•  Iterator-based traversal"

17"

Appendix: recap of WM!

18"

What is this window manager
and why do I care?!

– first, a more fundamental question:"
•  what is the desktop metaphor?"

–  a set of UI concepts that treat the computer display as if
it were the user’s real-world desktop"

–  desktop items include: documents, folders, desk
accessories (calculator, calendar)"

–  the purity of metaphor now diluted and now includes
things without real-world counterpart"

» menu bars, task bars, docks, trashcans, "

– key feature: desktop items can overlap!

19"

What is this window manager
and why do I care?!

–  it is system software"
•  operates computer hardware (the graphics card, in

this case)"
•  provides platform for running apps"

–  it provides display functionality for apps"
•  controls placement and appearance of windows"

–  open, close, minimize, maximize, move, resize"
•  implements look and feel of window decorators"

–  borders (decorative and functional), titlebar (title and
buttons)"

20"

The window manager provides
services to the VM!

– VM: Hi WM, I have this app that wants to
draw something graphical on the display…!

– WM: ok VM, here is some screen real estate.!
•  Your app can draw within that region, but not

outside it. (It can try, but I will never permit it to
happen)!
•  I will decide what actually gets drawn. (There may

be overlapping windows, so your real estate may
be occluded)!
•  I can’t guarantee this region. (The user may move

the window, or resize or minimize it)"
21"

