CSE2001

Test 1

This test lasts 80 minutes. No aids allowed.

Make sure your test has 5 pages, including this cover page.

Answer in the space provided. (If you need more space, use the reverse side of the page and indicate **clearly** which part of your work should be marked.)

Write legibly.

Question 1	/2
Question 2	/2
Question 3	/3
Question 4	/4
Question 5	/3
Question 6	/4
Question 7	/4
Total	/22

[2] **1.** Complete the following definition. A deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ is said to *accept* an input string $w = w_1 w_2 \cdots w_n$ (where each $w_i \in \Sigma$) if and only if ...

[2] 2. In class, we proved that if language L is recognized by a non-deterministic finite automaton, then L is also recognized by a *deterministic* finite automaton. Give a high-level description of the main idea of this proof. Your answer must fit in the box below.

[3] **3.** Is it true that every subset of every regular language is also regular? Circle the correct answer and then prove your answer is correct.

YES NO

[4] 4. Let $L_4 = \{w \in \{0, 1\}^* : w \text{ is any string except 11 and 111}\}$. Draw the transition diagram of a deterministic finite automaton that recognizes the language L_4 .

[3] 5. Let M = (Q, Σ, δ, q₀, F) be a non-deterministic finite automaton that recognizes language L. Let M' = (Q, Σ, δ, q₀, F') be another non-deterministic finite automaton, where F' = Q - F. Is it true (for all M) that M' recognizes the language L? Circle the correct answer and then show that your answer is correct.

YES NO

[4] 6. Let A₁, A₂,..., A₁₀₀₀₀ be regular languages over an alphabet Σ. Show that the intersection A₁ ∩ A₂ ∩ A₃ ∩ ··· ∩ A₁₀₀₀₀ must also be regular.
(You may use the following fact, which we proved in class: the intersection of *two* regular languages is regular.)

[4] 7. Let $L_7 = \{w \in \{a,b\}^* : w \text{ contains more a's than b's}\}$. For example, *abbabaa* is in L_7 because it contains four a's and three b's, and four is greater than three. Prove that the language L_7 is not regular.