YORK UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING 2011 WINTER TERM EXAMINATION Course Number: CSE2001

Title: Introduction to Theory of Computation

Duration: 3 hours

No aids allowed.

- There should be 10 pages in the exam, including this page.
- Write all answers on the examination paper. If your answer does not fit in the space provided, you can continue your answer on the back of a page or on page 10, indicating clearly that you have done so.
- You may use Church's Thesis in your answer to any question.
- Write legibly.

	Name						
	(Please underline your family name.)						
	Student Number						
1.	/8						
2.	/3						
3.	/3						
4.	/4						
5.	/3						
6.	/2						
7.	/3						
8.	/3						
9.	/4						
10.	/4						
11.	/4						
12.	/5						
13.	/4						
Total:	/50						

1. [8 marks] For each of the following languages, you must determine whether the language is regular, context-free, decidable, recognizable or not recognizable. For each language, circle the *leftmost* correct answer. For example, if a language is both recognizable and decidable, but not context-free, circle decidable.

Recall that w^R denotes the reverse of string w. For example, if w = 1011, then $w^R = 1101$.

In the following, B(n) denotes the binary representation of the integer n (with no leading 0's). For example, B(23) = 10111.

(a)
$$\{w \in \{0,1\}^* : w = w^R\}.$$

	regular	context-free	decidable	recognizable	not recognizable			
(b)	$\{B(n)\#B(n+1): n \in \mathbb{N}\}$. The alphabet for this language is $\Sigma = \{0, 1, \#\}$.							
	regular	context-free	decidable	recognizable	not recognizable			
(c)	$\{(B(n))^R \# B(n+1) : n \in \mathbb{N}\}$. The alphabet for this language is $\Sigma = \{0, 1, \#\}$.							
	regular	context-free	decidable	recognizable	not recognizable			
(d)	$\{w \in \{0,1\}^* : w \text{ contains an even number of 0's and an odd number of 1's}\}.$							
	regular	context-free	decidable	recognizable	not recognizable			
(e)	$\{0^i 1^j 2^i 3^j : i \ge 0 \text{ and } j \ge 0\}.$							
	regular	context-free	decidable	recognizable	not recognizable			
(f)	$\{w \in \{0,1\}^* : w \text{ contains more 0's than 1's}\}.$							
	regular	context-free	decidable	recognizable	not recognizable			
(g)	$\{\langle M \rangle : M \text{ is a Turing machine and there is a string } w \text{ such that } M \text{ takes at least } w + 3 \text{ steps on input } w\}.$							
	regular	context-free	decidable	recognizable	not recognizable			
(h)	$\{\langle M \rangle : M \text{ is a Turing machine and for every input string } w, M \text{ takes at least } w + 3 \text{ steps on input } w\}.$							
	regular	context-free	decidable	recognizable	not recognizable			

2. [3 marks] Let $L_2 = \{w \in \{0,1\}^* : \text{there is a 1 in every odd position of } w\}$. Draw the transition diagram of a deterministic finite automaton for L_2 .

3. [3 marks] Give a regular expression for the language accepted by the nondeterministic finite automaton shown below.

4. [4 marks] Let $L_4 = \{0^i 1^j : i \ge 0, j \ge 0 \text{ and } i > 3j\}$. Give a context-free grammar for L_4 . (You do *not* have to prove that your answer is correct.)

5. [3 marks] Recall that if w is a string, then w^R denotes the reverse of w. Suppose $G = (V, \Sigma, R, S)$ is a context-free grammar for a language L. Describe how to construct a grammar G' for the language $L^R = \{w^R : w \in L\}$.

(You do *not* have to prove that your answer is correct.)

6. [2 marks] Explain the difference between a Turing machine that recognizes a language L and a Turing machine that decides the language L.

7. [3 marks] Give a precise definition of $L \leq_m L'$. (I.e., what does it mean for a language L to be many-one reducible to a language L'?)

8. [3 marks] Is it true that every subset of every undecidable language is also undecidable? Circle the correct answer and then prove your answer is correct.

YES NO

9. [4 marks] In this question, the alphabet we are considering is $\Sigma = \{0, 1, \#\}$. Let $L_9 = \{x \# y : y \in \{0, 1\}^* \text{ and } x \text{ is a substring of } y\}$. For example, $1011 \# 1010110 \in L_9$ since 1011 is a substring of 1010110. Prove that L_9 is not regular.

10. [4 marks]

Let $L_{10} = \{\langle M \rangle : M \text{ is a Turing machine that accepts some string that contains 111 as a substring}\}$. Show that L_{10} is recognizable.

11. [4 marks]

Let $L_{11} = \{\langle R \rangle : R \text{ is a regular expression that generates some string that contains 111 as a substring}\}$. Sketch an algorithm that decides L_{11} . 12. [5 marks] Let $L_{12} = \{w \in \{0,1\}^* : w \text{ has odd length and the middle character of } w \text{ is } 1\}$. Give a formal proof that the following grammar (with starting symbol S) generates every string in L_{12} .

S	\rightarrow	TST	T	\rightarrow	0
S	\rightarrow	1	T	\rightarrow	1

If you use a proof by induction, clearly state the claim that you are proving by induction.

13. [4 marks] Let $L_{13} = \{ \langle M, w \rangle : M \text{ is a Turing machine, } w \text{ is a string and } M \text{ accepts neither } w \text{ nor } w^R \}$. Show that L_{13} is undecidable. This (nearly) blank page is for extra work space.