
13/11/2011

1

Writing Shell Scripts ─ part 3

CSE 2031

Fall 2011

113 November 2011

Debugging Tools

sh –v myscript

v: verbosev: verbose

displays each command it finds in the script as it
encounters it (before substitution).

allows you to find which particular line in your code has
the syntax error. Displaying will stop at this point and the
script exits.

Example:
sh -v setparm Amy

2

13/11/2011

2

Debugging Tools (2)

sh –x myscript

x: executex: execute

similar to –v, but displays a command only when it is
executed (before execution but after substitution).

useful for debugging control structures (if, case, loops).
 if no control structures then x and v display the whole program.

puts a plus sign (+) in front of any command that gets
processed (easier to read than –v).

Examples:
sh -x setparm Amy

sh -x chkex ghost # compare with -v
3

Debugging Tools (3)

sh –xv myscript

Both options may be used at the same timeBoth options may be used at the same time.

To check variable substitutions.

Example:
sh -xv setparm Amy

To view the whole program and its execution.

Example:
sh -xv chkex ghost

4

13/11/2011

3

Debugging Tools (4)

sh –n myscript

Reads the commands but does NOT execute themReads the commands but does NOT execute them.

Useful for “compiling” the script to detect syntax errors.

Example uses:

a good working script will modify/delete files.

interactive input from user is required.

very long scripts.very long scripts.

5

Changing Values of Positional
Parameters
 Positional parameters $1, $2, … normally

store command line argumentsstore command line arguments.

 Their values can be changed using set
command , for example, set `date`

 The new values are the output of date
command.

6

13/11/2011

4

Example

% cat setparm

#!/bin/sh

echo "Hello, $1. You entered $# command line argument(s). Today's date is ..."

date

set `date`

echo There are now $# positional parameters. The new parameters are ...

echo \$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6.

% setparm Amy Tony

Hello, Amy. You entered 2 command line argument(s). Today's date is ...

Sat Nov 27 11:55:52 EST 2010

There are now 6 positional parameters. The new parameters are ...

$1 = Sat, $2 = Nov, $3 = 27, $4 = 11:55:52, $5 = EST, $6 = 2010.

7

I/O Redirection of Control Structures

 Control structures can be treated as any other command
with respect to I/O redirection.with respect to I/O redirection.

 Example: myscan reads all the regular files from current
directory downwards, sorts them and searches each file
for a pattern entered via positional parameter $1; if
pattern exists, the file name is stored in file $1.out.

% cat myscan

#!/bin/sh#!/bin/sh

find . -type f | sort | while read File

do

grep -l $1 $File

done > $1.out 8

13/11/2011

5

Shell Functions

 Similar to shell scripts.
 Stored in shell where it is defined (instead of in a file).()
 Executed within sh
no child process spawned

 Syntax:

function_name()
{
commands

}

 Allows structured shell scripts

9

Example

#!/bin/sh
function to sample how many users are logged on
log()log()
{

echo “Users logged on:” >> users
date >> users
who >> users
echo “\n\n” >> users

}

taking first sample
log

taking second sample (30 min. later)
sleep 1800
log

10

13/11/2011

6

Shell Functions (2)

 Make sure a function
does not call itself

i dl l

 Should be written:

causing an endless loop.

% cat makeit
#!/bin/sh
…
sort()
{

sort $* | more

% cat makeit
#!/bin/sh
…
sort()
{

/bin/sort $* | moresort $* | more
}
…

/bin/sort $ | more
}
…

11

Environment and Shell Variables

 Standard UNIX variables are divided into 2 categories:
shell variables and environment variables.shell variables and environment variables.

 Shell variables: apply only to the current instance of the
shell; used to set short-term working conditions.
displayed using ‘set’ command.

 Environment variables: set at login and are valid for the
duration of the session.
di l d i ddisplayed using ‘env’ command.

 By convention, environment variables have UPPER
CASE and shell variables have lower case names.

12

13/11/2011

7

Environment and Shell Variables (2)

 In general, environment and shell variables that have
“the same” name (apart from the case) are distinct andthe same name (apart from the case) are distinct and
independent, except for possibly having the same initial
values.

 Exceptions:
 When home, user and term are changed, HOME, USER

and TERM receive the same values.

 But changing HOME USER or TERM does not affect home But changing HOME, USER or TERM does not affect home,
user or term.

 Changing PATH causes path to be changed and vice
versa.

13

Variable path

 PATH and path specify directories to search for
commands and programs.commands and programs.

cd # current dir is home dir

chex report # chex is in 2031/Lect, so failed

echo $path

set path=($path 2031/Lect)

echo $path

chex report # successful

ls –l report

 To add a path permanently, add the line to your .cshrc
(or .bashrc) file after the list of other commands.

set path=($path .) # avoid typing ./a.out

14

13/11/2011

8

set Command Summary

Displays shell variables

Set variables

Changing command-line arguments
set `date`

15

break and continue

 Interrupt loops (for, while, until)

 break transfers control immediately to the statement
after the nearest done statement
terminates execution of the current loop

 continue transfers control immediately to the nearest
done statement
brings execution back to the top of the loopbrings execution back to the top of the loop

 Same effects as in C.

16

13/11/2011

9

break and continue Example

#!/bin/sh

while true

echo “Bypassing ‘break’.”

do

echo “Entering ‘while’ loop ...”

echo “Choose 1 to exit loop.”

echo “Choose 2 to go to top of loop.”

echo -n “Enter choice: ”

read choice

if test $choice = 2

then

continue

fi

echo “Bypassing ‘continue’.”

if test $choice = 1

then

break

fi

done

echo “Exit ‘while’ loop.”

17

$* versus $@

 $* and $@ are identical when not quoted: expand into
the arguments; blanks in arguments result in multiplethe arguments; blanks in arguments result in multiple
arguments.

 They are different when double-quoted:
 “$@” each argument is quoted as a separate string.

 “$*” all arguments are quoted as a single string.

18

13/11/2011

10

$* versus $@ Example

% cat displayargs

#!/bin/sh

echo All the arguments are "$@".

countargs "$@"

echo All the arguments are "$*".

countargs "$*"

% cat countargs

#!/bin/sh

echo Number of arguments to countargs = $#

% sh -xv displayargs Mary Amy Tony

19

Next time ...

 C again:

Program structureProgram structure

makefile

 Review

 Reading for this lecture:

3.6 to 3.8, UNIX textbook

Posted tutorial on standard UNIX variablesPosted tutorial on standard UNIX variables

See Chapter 5, UNIX textbook for more examples.

20

