Shell Control Structures

CSE 2031
Fall 2011

13 November 2011

Control Structures

if then else
for

while

case (which)
until

13/11/2011

if Statement and test Command

Syntax:

if condition
then

command(s)
elif condition_2
then

command(s)
else

command(s)
fi

Command test is often used in condition

if —then — else Example

% cat if_else % if _else
#1/bin/sh r
echo -n "Enter string 1:
read stringl

echo -n "Enter string 2: " No match!
read string2

if test $stringl = $string2 % if else
then .

echo "They match!*
else

echo "No match!" They match!
i

Enter string 1:
Enter string 2:

Enter string 1:
Enter string 2:

acd
123

123
123

13/11/2011

test Command

Argument Testis trueif...

~d file file is a directory

-f file file is an ordinary file

-r file file is readable

-5 file file size is greater than zero
~w file file is writable

-x file file is executable

I -d file file is not a directory

I -f file file is not an ordinary file

! -r file file is not readable

L -s file file size is not greater than zero
I -w file file is not writable

I ~x file file is not executable

—e file file or directory exists

test Command (2)

nl -eq n2 integer nl equals integer n2

nl -ge n2 integer #1 is greater than or equal fo integer n2
nl -gt n2 integer nl is greater than integer n2

nl ~le n2 integer n1 is less than or equal to integer 12

nl -ne n2 integer nl is not equal to integer #2

nl -1t n2 integer 1 is less than integer n2

sl = s2 string s1 equals string s2

s1 1= 52 string s1 is not equal to string s2

Parentheses can be used for grouping test conditions.

13/11/2011

test Example 1

% cat check Ffile % touch z.txt
#1/bin/sh
if test ! -s $1 % check_file z.txt

then File z.txt is empty.

echo "File $1 is empty.*
exit 1

else
Is -1 51

fi

test Example 2

% cat check file

#1/bin/sh

if test $# -eq O

then
echo Usage: check_file file_name
exit 1

fi

if test ! -s $1

then
echo "File $1 is empty.“
exit 1

else
Is -1 $1

fi

13/11/2011

test Example 3

What is wrong with the following script?

% cat chkex2
#1/bin/sh
Check 1f a file 1s executable.
if test -x $1
then

echo File $1 is executable.
else

echo File $1 is not executable.
fi

test and Logical Operators

I, Jland&&asinC

Following is better version of test Example 3
%cat chkex
#1/bin/sh
ifT test -e $1 && test -x $1
then

echo File $1 is executable.
elif test ! -e $1
then

echo File $1 does not exist.
else

echo File $1 is not executable.
fi

13/11/2011

for Loops

for variable in list
do

command(s)
done

variable is a user-defined variable.

list is a sequence of strings separated by
spaces.

for Loop Example 1

% cat fingr
#1/bin/sh
for name in $*
do

finger $name
done

Recall that $* stands for all command line
arguments the user enters.

13/11/2011

for Loop Example 2

% cat fsize
#1/bin/sh
for 1 In $*
do
echo "File $i: size “wc -c $i™"
done

% fsize chex chfile chfile2
File chex: size 86 chex

File chfile: size 90 chfile
File chfile2: size 163 chfile2

for Loop Example 3

% cat prdir

#1/bin/sh

Display all c files iIn a directory
specified by argument 1.

#

for 1 in $1/*.c

do
echo "'======= $i ======"'
more $i

done

13/11/2011

Arithmetic Operations Using expr

The shell is not intended for numerical work (use Java, C, or Perl
instead).

However, expr utility may be used for simple arithmetic operations

on integers.
expr is not a shell command but rather a UNIX utility.

To use expr in a shell script, enclose the expression with
backquotes.

Example:
#1/bin/sh

sum="expr $1 + $2°
echo $sum

Note: spaces are required around the operator + (but not allowed
around the equal sign).

expr Example

% cat cntx
#1/bin/sh
Count the number of executable files iIn ..
the current working directory
count=0
for 1 in * # what 1f we replace * with $* ?
do
if test -x $i
then
count="expr $count + 1°
Is -1 $i
fi
done
echo “$count executable files.” 16

13/11/2011

while Loops

while condition
do

command(s)
done

Command test is often used in condition.
Execute command(s)when condition is met.

while Loop Example

#1/bin/sh
Display the command line arguments, one per line.
count=1
argc=%$#
while test $count -le $argc
do
echo "Argument $count is: $1"
count="expr $count + 1°
shift # shift arg 2 into arg 1 position
done

What happens if the while statement is as follows?
while test $count -le $#

18

13/11/2011

until Loops

until condition
do

command(s)
done

Command test is often used in condition.

Exit loop when condition is met.

until Loop Example

% cat grocery

#1/bin/sh

Enter a grocery list and ..

store in a file indicated by $1
#

echo To end list, enter \"all\".
item=nothing

until test $item = “all”

do
echo -n "Enter grocery item: "
read item
echo $item >> $1

done

20

13/11/2011

10

until Loop Example Output

% grocery glist
To end list, enter

Enter grocery item:
Enter grocery item:
Enter grocery item:
Enter grocery item:

"all™.

milk
eggs
lettuce
all

% cat glist
mi Ik

eggs
lettuce

all

21

case Statement

case variable in

patternl) command(s);;
pattern2) command(s);;

patternN) command(s);;

*) command(s);;

esac

Why the double semicolons?

all other cases

22

13/11/2011

11

case Statement Example

#1/bin/sh

Course schedule

echo -n "Enter t

read day
case $day in
mon) echo
echo
tue | thu)
echo
wed) echo
fri) echo
*) echo
esac

he day (mon, tue, wed, thu, fri): "

"CSE2031 2:30-4:30 CLH-H"
"CSE2021 17:30-19:00 TEL-0016";;

"CSE2011 17:30-19:00 SLH-E";;
"No class today. Hooray!";;
"CSE2031 2:30-4:30 LAB 1006";;
"Day off. Hooray!";;

23

Process-Related Variables

Variable $$ is PID of the shell.

% cat shpid
#1/bin/sh

ps

echo PID of shel

% shpid

PID TTY

5658 pts/75 0

5659 pts/75 O
11231 pts/75 0
PID of shell is

I is = 3

TIME CMD
0:00:00 shpid
0:00:00 ps
0:00:00 tcsh
= 5658

24

13/11/2011

12

Process Exit Status

All processes return exit status (return code).

Exit status tells us whether the last command was
successful or not.

Stored in variable $?
0 (zero) means command executed successfully.
0 is good; non-zero is bad.

Good practice: Specify your own exit status in a shell
script using exit command.

default value is O (if no exit code is given).

25

Process Exit Status: Example

An improved version of % igrep echo phone
grep. echo —n “Enter name: ~

% cat igrep
#1/bin/sh % igrep echo2 chex
Arg 1: search pattern Pattern not found.
Arg 2: file to search
#
grep $1 $2
if test $? -ne O
then
echo Pattern not found.
fi

26

13/11/2011

13

Next time ...

Shell scripting — part 3

Reading for this lecture:
3.6 to 3.8 and Chapter 5, UNIX textbook
Posted notes (chapter 33)

27

13/11/2011

14

