
1

Writing Shell Scripts ─ part 1

CSE 2031

Fall 2011

113 November 2011

What Is a Shell?

• A program that
interprets your request te p ets you equest
to run other programs

• Most common Unix
shells:
– Bourne shell (sh)
– C shell (csh)
– Korn shell (ksh)()
– Bourne-again shell

(bash)

• In this course we focus
on Bourne shell (sh).

2

2

The Bourne Shell

 A high level programming language

 P f d t d i fil Processes groups of commands stored in files
called scripts

 Includes
variables

control structures

processes

signals

3

Executable Files

Contain one or more shell commands.

These files can be made executable.

indicates a comment
Except on line 1 when followed by an “!”

% cat welcome% cat welcome
#!/bin/sh
echo ‘Hello World!’

4

3

Executable Files: Example

% cat welcome
#!/bin/sh
echo ‘Hello World!’
% welcome
welcome: execute permission denied
% chmod u+x welcome
% ls -l welcome
-rwxr--r-- 1 lan grad 20 Aug 29 2010 welcome
% elcome% welcome
Hello World!
% welcome > greet_them
% cat greet_them
Hello World!

5

Executable Files (cont.)

 If the file is not executable, use “sh” followed by
the file name to run the scriptthe file name to run the script.

 Example:
% chmod u-x welcome

% ls -l welcome

1 l d 20 A 29 2010 lrw-r--r-- 1 lan grad 20 Aug 29 2010 welcome

% sh welcome

Hello World!

4

Processes

Consider the welcome program.

7

Processes: Explanation

 Every program is a “child” of some other program.

 Shell fires up a child shell to execute script.

 Child shell fires up a new (grand)child process for each
command.

 Shell (parent) sleeps while child executes.

 Every process (executing a program) has a unique PID.

 Parent does not sleep while running background
processes.

8

5

Variables: Three Types

 Standard UNIX variables
 Consist of shell variables and environment variables Consist of shell variables and environment variables.

 Used to tailor the operating environment to suit your needs.

 Examples: TERM, HOME, PATH

 To display your environment variables, type “set”.

 User variables: variables you create yourself.

 Positional parameters
 Also called read-only variables, automatic variables.

 Store the values of command-line arguments.

9

User Variables
 Each variable has two parts:

 a name
 a value

 Syntax:
name=value

 No space around the equal sign!
 All shell variables store strings (no numeric values).
 Variable name: combinations of letters, numbers, and

underscore character (_) that do not start with a
numbernumber.

 Avoid existing commands and environment variables.
 Shell stores and remembers these variables and

supplies value on demand.

10

6

User Variables (2)

 These are variables you,
the user, create, read and

#!/bin/sh

dir=/usr/include/the user, create, read and
change.

 To use a variable:

$varname
 Variable substitution

operator $ tells the shell

dir=/usr/include/

echo $dir

echo dir

ls $dir | grep ‘ma’

Output:
/usr/include/

to substitute the value of
the variable name.

/ / /

dir

malloc.h math.h
numa.h semaphore.h

11

echo and Variables

What if I’d want to display the following?
didir

 Two ways to prevent variable substitution:
echo ‘$dir’

echo \$dir

 Note:
echo “$dir” does the same as

echo $dir

12

7

Command Line Arguments

 Command line arguments stored in variables called
positional parameters.

 These parameters are named $1 through $9.

 Command itself is in parameter $0.

 In diagram format:

command arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

 Arguments not present get null (absence of) value
13

Example 1

% cat display_args
#!/bin/sh
echo First four arguments from the
echo command line are: $1 $2 $3 $4

% display_args William Mary Richard James
First four arguments from the
command line are: William Mary Richard James

14

8

Example 2
% cat chex

#!/bin/sh

Make a file executable# Make a file executable

chmod u+x $1

echo $1 is now executable:

ls –l $1

% sh chex chex

chex is now executable:

rwx 1 utn faculty 86 Nov 12 11:34 chex-rwx------ 1 utn faculty 86 Nov 12 11:34 chex

% chex showargs

showargs is now executable:

-rwx------ 1 utn faculty 106 Nov 2 14:26 showargs

15

Command Line Arguments (2)

 A macro is a stand-in for one or more variables
$# represents the number of command line argumentsp g
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check_args
#!/bin/sh
echo “There are $# arguments.”
echo “All the arguments are: $*”g $
or echo “All the arguments are: $@”

% check_args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

16

9

Command Line Arguments (3)

 Note: $# does NOT include the program name
(unlike argc in C programs)(unlike argc in C programs)

What if the number of arguments is more than
9? How to access the 10th, 11th, etc.?

 Use shift operator.

17

shift Operator

 shift promotes each argument one position to the left.
 Operates as a conveyor belt.
 Allows access to arguments beyond $9.

shifts contents of $2 into $1
shifts contents of $3 into $2
shifts contents of $4 into $3
etc.

 Eliminates argument(s) positioned immediately after the
commandcommand.

 Syntax:
shift # shifting arguments one position to the left
 After a shift, the argument count stored in $# is

automatically decremented by one.
18

10

Example 1

% cat args

#!/bin/sh

echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"

myvar=$1 # save the first argument

shift

echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"

echo "myvar = $myvar”

% args 1 2 3 4 5 6 7 8 9 10 11 12

arg1 = 1, arg8 = 8, arg9 = 9, ARGC = 11

arg1 = 2, arg8 = 9, arg9 = 10, ARGC = 10

myvar = 1

19

Example 2

% cat show_shift
#!/bin/sh
h “ 1 $1 2 $2 3 $3”echo “arg1=$1, arg2=$2, arg3=$3”

shift
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”

% show_shift William Richard Elizabeth
arg1=William, arg2=Richard, arg3=Elizabethg , g , g
arg1=Richard, arg2=Elizabeth, arg3=
arg1=Elizabeth, arg2= , arg3=

20

11

Example 3

% my_copy dir_name filename1 filename2 filename3 …

Thi h ll i t i ll th fil t# This shell script copies all the files to
directory “dir_name”

% cat my_copy
#!/bin/sh
Script allows user to specify, as the 1st argument,
the directory where the files are to be copied.
location=$1
shift
files=$*
cp $files $location

21

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it

shift
shift
shift

shift; shift; shift

shift 3

22

12

User Variables and Quotes

name=value

If value contains no space
% cat quotes

#!/bin/shp
no need to use quotes …

#!/bin/sh

dir=/usr/include/

echo $dir

Test values with quotes

myvar1=$100

myvar2='$100'

echo The price is $myvar1

echo The price is $myvar2

… unless you want to protect
the literal, in which case use
single quotes.

% quotes 5000

The price is 500000

The price is $100

23

User Variables and Quotes (2)

 If value contains one or more spaces:

 use single quotes for NO interpretation of metacharacters (protect
the literal)

 use double quotes for interpretation of metacharacters

% cat quotes

#!/bin/sh

myvar=`whoami`

squotes='Today is `date`, $myvar.'

dquotes="Today is `date`, $myvar."

echo $squotes

echo $dquotes

% quotes

Today is `date`, $myvar.

Today is Fri Nov 12 12:07:38 EST 2010, cse12345. 24

13

Example
% cat my_script

#!/bin/sh

dirs=‘/usr/include/ /usr/local/’ # need single quotes

echo $dirs

ls -l $dirs

% my_script

/usr/include/ /usr/local/

/usr/include/:

total 2064

-rw-r--r-- 1 root root 5826 Feb 21 2005 FlexLexer.h

drwxr-xr-x 2 root root 4096 May 19 05:39 GL

...

/usr/local/:

total 72

drwxr-xr-x 2 root root 4096 Feb 21 2005 bin

drwxr-xr-x 2 root root 4096 Feb 21 2005 etc

...
25

Reading User Input

 Reads from standard input.

 Stores what is read in user variable.

 Waits for the user to enter something followed by
<RETURN>.

 Syntax:
d # d ll i $read varname # no dollar sign $

 To use the input:
echo $varname

26

14

Example 1

% cat greeting
#!/bin/sh
echo –n “Enter your name: ”
read name
echo “Hello, $name. How are you today?”

% readit
Enter your name: Jane

Hello, Jane. How are you today?

27

Example 2

% cat doit
#!/bin/sh
echo –n ‘Enter a command: ’
read command
$command
echo “I’m done. Thanks”

% doit
Enter a command: ls lab*
lab1.c lab2.c lab3.c lab4.c lab5.c lab6.c
I’m done. Thanks

% doit
Enter a command: who
lan pts/200 Sep 1 16:23 (indigo.cs.yorku.ca)
jeff pts/201 Sep 1 09:31 (navy.cs.yorku.ca)
anton pts/202 Sep 1 10:01 (red.cs.yorku.ca)
I’m done. Thanks

28

15

Reading User Input (2)

More than one variable may be specified.

 Each word will be stored in separate variable.

 If not enough variables for words, the last
variable stores the rest of the line.

29

Example 3

% cat read3
#!/bin/sh
h “E t t i ”echo “Enter some strings: ”

read string1 string2 string3
echo “string1 is: $string1”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3
Enter some strings: g
This is a line of words
string1 is: This
string2 is: is
string3 is: a line of words

30

16

Next time …

 Control structures (if, for, while, …)
 Diff b t $* d $@ Difference between $* and $@

 Shell variables

 Reading for this lecture: posted notes (chapter
33)

31

