15 October 2011

Structures

CSE 2031
Fall 2011

Basics of Structures (6.1)

struct point {
int x;
int vy;

%

keyword struct introduces a
structure declaration.

point : structure tag

X,y :members

The same member names may
occur in different structures.

Now struct point isa
valid type.
Defining st ruct variables:
struct point pt;
struct point
maxpt = {320, 200};
A struct declaration defines
a type.
struct {...}X, Y, z;
or struct point x,y,z;
is syntactically analogous to
int x,y, z;

Using Structures

Members are accessed using operator “.
structure-name.member
printf(“%d,%d", pt.x, pt.y);
double dist, sqrt(double);
dist = sqgrt((double)pt.x * pt.x +
(double)pt.y * pt.y);

Structures cannot be assigned.
struct point ptl, pt2;

ptl.x =0; ptl.y = 0;

pt2 = ptl; /* WRONG ! ¥/

Structure Name Space

Structure and members names have their own
name space separate from variables and
functions.
struct point point ; /* both are valid */
or
struct point {
int x;
int y;
X

Nested Structures

struct rect {

struct point ptl; y
. _ ‘ pt2
struct point pt2;
%
struct rect screen; pti
screen.ptl.x = 1; "

screen.ptl.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7,

Structures and Functions (6.2)

Returning a structure from a function.
/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y) {
struct point temp;
temp.x =X;
temp.y =y,
return temp;
}
struct rect screen;
struct point middle;
struct point makepoint(int, int);
screen.ptl = makepoint(0,0);
screen.pt2 = makepoint(XMAX, YMAX);
middle = makepoint((screen.ptl.x + screen.pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);

Structures and Functions (cont.)

Passing structure arguments to functions: structure parameters are
passed by values like int, char, float, etc. (a copy of the structure is
sent to the function).

/* addpoints: add two points */
struct point addpoint(struct point p1, struct point p2)
{

pl.x += p2.x;

ply +=p2.y;

return pil;

Note: the components in p1 are incremented rather than using an
explicit temporary variable to emphasize that structure parameters
are passed by value like any others (no changes to original struct).

Pointers to Structures

If a large structure is to be passed to a function, it is
generally more efficient to pass a pointer than to copy
the whole structure.

struct point *pp;

struct point origin;

pp = &origin;

printf(“origin is (%d,%d)\n", (*pp).X, (*pp).Y);

Note: *pp.x means *(pp.x), which is illegal (why?)

Pointers to Structures: Example

/* addpoints: add two points */
struct point addpoint (struct point *pl, struct point *p2)
{

struct point temp;

temp.x = (*pl). x+ (*p2). Xx;

tempy = (*pl). y+ (*p2). v;

return temp;

}

main() {
struct point a, b, c;
[* Input or initialize structures a and b */
¢ = addpoint(&a, &b);

}

Pointers to Structures: Shorthand

(*pp).x can be written as pp->x

printf("origin is (%d,%d)\n", pp-> X, pp->V);
struct rect r, *rp = &r

r.ptl.x =1;

rp->ptl.x = 2;

(r.ptl).x =3;

(rp->ptl).x = 4;

Note: Both . and - > associate from left to right.

10

Pointers to Structures: More Examples

The operators . and - > along
with () and [] have the highest
precedence and thus bind very

tightly.
struct { *p->str
int len; *p->Str++
char *str; (*p->str)++
}p; *pH+->str
++p->len = ++(p->len)
(++p)->len
(p++)->len = p++->len

11

Arrays of Structures (6.3)

struct dimension {
float width;
float height;
3
struct dimension chairs[2];
struct dimension *tables;
tables = (struct dimension*) malloc
(20 * sizeoff(struct dimension));

12

Initializing Structures

struct dimension sofa = {2.0, 3.0},

struct dimension chairs[] = {
{1.4, 2.0},
{0.3, 1.0},
{2.3, 2.0} };

13

Arrays of Structures: Example

struct key { struct key {
char *word,; char *word;
int count; int count;
% } keytab[] = {
' "auto", 0,
"break”, 0,
struct key keytab[NKEYS]; “case", 0,
struct key *p; ::Chaf"tilo(')
const’, O,
for (p = keytab; “"continue”, 0,
p < keytab + NKEYS; p++) "default”, 0,
printf("%4d %s\n", o
. "unsigned", 0,
p->count, p->word); "oid". 0,
"volatile", 0,
"while", 0

14

Pointers to Structures (6.4)

struct key keytab[NKEYS];

struct key *p;

for (p = keytab; p < keytab + NKEYS; p++)
printf("%4d %s\n", p->count, p->word);

p++ increments p by the correct amount (i.e., structure size) to get the next
element of the array of structures.

struct {
char c; /* one byte */
int i; /*four bytes */

What is the total structure size?
Use the sizeof operator to get the correct structure size.

15

Self-referential Structures (6.5)

Example: (singly) linked list
struct list {

int data;
struct list *next;

16

Linked List

Pointer head points to the first element
Last element pointer is NULL

Example (next slide): build a linked list with data being
non-negative integers, then search for a number.
Insertion at the end (rear) of the list.

We also learn how to dynamically allocate a structure.

head

| E \NULL\

17

Linked List Implementation

#include <stdio.h>
#include <stdlib.h>
main() {
struct list {
int data;
struct list *next;

while(i>=0){
p = (struct list *)
malloc(sizeof(struct list));
p—>data = i;
p—>next = NULL;
last—>next = p;

} *head, *p, *last; last = p; _
inti; scanf(“%d”, &i);
} /* while */

/* Create a dummy node, which
simplifies insertion and deletion */
head = (struct list *malloc
(sizeof(struct list));
head->data = -1,
head->next = NULL,;
last = head;

printf(“Enter the number to search for
scanf(“%d”, &i);
for(p = head; p '= NULL; p =p>next)
if(p—>data==1i)
printf("FOUND %d \n“, i);
} /* main */

scanf(“%d”, &i); /* input Btelement */

18

9

typedef (6.7)

For creating new data type names

typedef int Length;
Length len, maxlen;
Length *lengths]];

typedef char* String;
String p, lineptrMAXLINES];
p = (String) malloc(100);

int strcmp(String, String);

19

typedef with struct

We can define a new type and use it later

typedef struct {
int x,y;
float z;
} mynewtype ;
mynewtype a, b, ¢, X;

Now, mynewtype is a type in C just like int
float

or

20

Self-referential Structures: More Examples

Binary trees (6.5)
Hash tables (6.6)

To be covered later if time permits.

21

Reminders

Midterm (Oct. 31)
Lab test 1 (Oct. 28 and 31)
Next lecture: Pointers part 2

22

