
Structures

CSE 2031
Fall 2011

115 October 2011

Basics of Structures (6.1)

struct point {

int x;

int y;

};

keyword struct introduces a
structure declaration.

point : structure tag

x, y : members

The same member names may
occur in different structures.

� Now struct point is a
valid type.

� Defining struct variables:
struct point pt;

struct point

maxpt = {320, 200};

� A struct declaration defines
a type.
struct { ... } x, y, z;

or struct point x,y,z;

is syntactically analogous to
int x, y, z;

2

Using Structures

� Members are accessed using operator “.”
structure-name.member

printf(“%d,%d", pt.x, pt.y);

double dist, sqrt(double);

dist = sqrt((double)pt.x * pt.x +

(double)pt.y * pt.y);

� Structures cannot be assigned.
struct point pt1, pt2;

pt1.x = 0; pt1.y = 0;

pt2 = pt1; /* WRONG !!! */

3

Structure Name Space

� Structure and members names have their own
name space separate from variables and
functions.
struct point point ; /* both are valid */

or

struct point {

int x;

int y;

} x;

4

Nested Structures

struct rect {

struct point pt1;

struct point pt2;

};

struct rect screen;

screen.pt1.x = 1;

screen.pt1.y = 2;

screen.pt2.x = 8;

screen.pt2.y = 7;

5

Structures and Functions (6.2)

� Returning a structure from a function.
/* makepoint: make a point from x and y components */

struct point makepoint(int x, int y) {

struct point temp;

temp.x = x;

temp.y = y;

return temp;

}

struct rect screen;

struct point middle;

struct point makepoint(int, int);

screen.pt1 = makepoint(0,0);

screen.pt2 = makepoint(XMAX, YMAX);

middle = makepoint((screen.pt1.x + screen.pt2.x)/2,

(screen.pt1.y + screen.pt2.y)/2);

6

Structures and Functions (cont.)

� Passing structure arguments to functions: structure parameters are
passed by values like int, char, float, etc. (a copy of the structure is
sent to the function).

/* addpoints: add two points */

struct point addpoint(struct point p1, struct point p2)

{

p1.x += p2.x;

p1.y += p2.y;

return p1;

}

� Note: the components in p1 are incremented rather than using an
explicit temporary variable to emphasize that structure parameters
are passed by value like any others (no changes to original struct).

7

Pointers to Structures

� If a large structure is to be passed to a function, it is
generally more efficient to pass a pointer than to copy
the whole structure.

struct point *pp;

struct point origin;

pp = &origin;

printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);

� Note: *pp.x means *(pp.x), which is illegal (why?)

8

Pointers to Structures: Example

/* addpoints: add two points */

struct point addpoint (struct point *p1 , struct point *p2)

{

struct point temp;

temp.x = (*p1). x + (*p2). x;

temp.y = (*p1). y + (*p2). y;

return temp;

}

main() {

struct point a, b, c;

/* Input or initialize structures a and b */

c = addpoint(&a, &b);

}
9

Pointers to Structures: Shorthand

� (*pp).x can be written as pp->x

printf("origin is (%d,%d)\n", pp-> x, pp-> y);

struct rect r, *rp = &r ;

r.pt1.x = 1;

rp->pt1.x = 2;

(r.pt1).x = 3;

(rp->pt1).x = 4;

� Note: Both . and -> associate from left to right.

10

Pointers to Structures: More Examples

� The operators . and -> along
with () and [] have the highest
precedence and thus bind very
tightly.

struct {

int len;

char *str;

} *p;

++p->len ⇔⇔⇔⇔ ++(p->len)

(++p)->len

(p++)->len ⇔⇔⇔⇔ p++->len

*p->str

*p->str++

(*p->str)++

*p++->str

11

Arrays of Structures (6.3)

struct dimension {

float width;
float height;

};

struct dimension chairs[2];

struct dimension *tables;
tables = (struct dimension*) malloc

(20 * sizeoff(struct dimension));

12

Initializing Structures

struct dimension sofa = {2.0, 3.0};

struct dimension chairs[] = {

{1.4, 2.0},

{0.3, 1.0},

{2.3, 2.0} };

13

Arrays of Structures: Example

struct key {

char *word;

int count;

};

struct key keytab[NKEYS];

struct key *p;

for (p = keytab;

p < keytab + NKEYS; p++)

printf("%4d %s\n",

p->count, p->word);

struct key {

char *word;

int count;

} keytab[] = {
"auto", 0,

"break", 0,

"case", 0,

"char", 0,

"const", 0,

"continue", 0,

"default", 0,

/* ... */

"unsigned", 0,

"void", 0,

"volatile", 0,

"while", 0

};

14

Pointers to Structures (6.4)

struct key keytab[NKEYS];

struct key *p;

for (p = keytab; p < keytab + NKEYS; p++)

printf("%4d %s\n", p->count, p->word);

� p++ increments p by the correct amount (i.e., structure size) to get the next
element of the array of structures.

struct {

char c; /* one byte */

int i; /* four bytes */

};

� What is the total structure size?
� Use the sizeof operator to get the correct structure size.

15

Self-referential Structures (6.5)

Example: (singly) linked list

struct list {

int data;

struct list *next;

};

16

3

Linked List

� Pointer head points to the first element
� Last element pointer is NULL

� Example (next slide): build a linked list with data being
non-negative integers, then search for a number.
� Insertion at the end (rear) of the list.

� We also learn how to dynamically allocate a structure.

3 10 6 NULL

head

17

Linked List Implementation

#include <stdio.h>
#include <stdlib.h>
main() {

struct list {
int data;
struct list *next;

} *head, *p, *last;
int i;

/* Create a dummy node, which
simplifies insertion and deletion */

head = (struct list *) malloc
(sizeof(struct list));

head─>data = -1;
head─>next = NULL;
last = head;
scanf(“%d”, &i); /* input 1st element */

while(i >= 0) {
p = (struct list *)

malloc(sizeof(struct list));
p─>data = i;
p─>next = NULL;
last─>next = p;
last = p;
scanf(“%d”, &i);

} /* while */

printf(“Enter the number to search for “);
scanf(“%d”, &i);
for(p = head; p != NULL; p = p─>next)

if(p─>data == i)
printf("FOUND %d \n“, i);

} /* main */

18

typedef (6.7)

� For creating new data type names

typedef int Length;

Length len, maxlen;

Length *lengths[];

typedef char * String;

String p, lineptr[MAXLINES];

p = (String) malloc(100);

int strcmp(String, String);

19

typedef with struct

� We can define a new type and use it later

typedef struct {

int x,y;

float z;
} mynewtype ;

mynewtype a, b, c, x;

� Now, mynewtype is a type in C just like int or
float .

20

Self-referential Structures: More Examples

� Binary trees (6.5)
� Hash tables (6.6)

To be covered later if time permits.

21

Reminders

�Midterm (Oct. 31)
�Lab test 1 (Oct. 28 and 31)
�Next lecture: Pointers part 2

22

