
1

Arrays and Pointers (part 1)

CSE 2031

Fall 2011

125 September 2011

Arrays

Grouping of data of the same type.

 L l d f i l ti Loops commonly used for manipulation.

 Programmers set array sizes explicitly.

2

2

Arrays: Example

Syntax
type name[size];

Examples
int bigArray[10];

double a[3];double a[3];

char grade[10], oneGrade;

3

Arrays: Definition and Access

 Defining an array: allocates memory
int score[5];int score[5];
Allocates an array of 5 integers named "score"

 Individual parts can be called:
Indexed or subscripted variables
"Elements" of the array

 Value in brackets called index or subscript
Numbered from 0 to (size – 1)

4

3

Arrays Stored in Memory

a[0]
1234

a[0]

a[1]

a[2]

1235

1236

1237

1238

…..

…

…

a[n]

1260

1261 Some other
variables

5

Initialization

• In declarations enclosed in curly braces

int a[5] = {11,22}; Declares array a and initializes first two
elements and all remaining set to zero

int b[] = {1,2,8,9,5}; Declares array b and initializes
all elements and sets the length
of the array to 5

6

4

Array Access

x = ar[2];

ar[3] = 2.7;

What is the difference between
ar[i]++, ar[i++], ar[++i] ?

7

Strings

 No string type in C

 String = array of char String = array of char

 char gretings[] = “Hello”

H e l l o \0

8

5

Pointers

CSE 2031

Fall 2010

9

Pointers and Addresses (5.1)

Memory address of a variable

 Declared with data type, * and identifier
type * pointer_var1, * pointer_var2, …;

 Example.
double * p;
int *p1, *p2;int p1, p2;

 There has to be a * before EACH of the pointer
variables

10

6

Pointers and Addresses (cont.)

• Use the "address of" operator (&)p ()

• General form:

pointer_variable = &ordinary_variable

Name of the pointer Name of ordinary
variable

11

Using a Pointer Variable

 Can be used to access a value

 Unary operator * used Unary operator used
* pointer_variable

 In executable statement, indicates value

 Example
int *p1, v1;
v1 = 0;

Output:
42
42

v1 = 0;
p1 = &v1;
*p1 = 42;
printf(“%d\n“,v1);
printf(“%d\n,*p1);

12

7

Pointer Variables

int x,y;

int * z;

x = 25;
y = x;
z = &x;

1200 1204 1208

int z;

25

9608 8404

25 1204

13

Pointer Variables (cont.)

z= 1024 BAD idea

Instead, use z = &x

14

8

Pointer Types

int x = 25, *y, z;

y = &x;y

25

1200 1204 1208

1204

8404

y ;

z = *y;

9608

25

z 15

Another Example of Pointers
int *p1, *p2, x = 8, y = 9; p1 = &x; p2 = &y;

16

9

More Examples

int x = 1, y = 2, z[10], k;

int *ip; p

ip = &x; /* ip points to x*/

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

z[0] = 0;

ip = &z[0]; /* ip points to z[0] */

for (k = 0; k < 10; k++)

z[k] = *ip + k;

*ip = *ip + 100;

++*ip;

(*ip)++; /* How about *ip++ ??? */

17

Pointers and Function Arguments (5.2)

Write a function that swaps
the contents of two

C passes arguments to
functions by values.the contents of two

integers a and b.

void main() {

int a, b;

/* Input a and b */

swap(a, b);

functions by values.

void swap(int x, int y)

{

int temp;

temp = x;
printf(“%d %d”, a, b);

{
x = y;

y = temp;

}

18

10

The Correct Version

void swap(int *px, int *py)

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

void main() {

int a, b;

/* Input a and b */

swap(&a, &b);

printf(“%d %d”, a, b);

{
19

Arrays and Pointers

20

11

Pointers and Arrays (5.3)

 Identifier of an array is equivalent to the address of its
first element.

int numbers[20];
int * p;

p = numbers // Valid
numbers = p // Invalid

 p and numbers are equivalent and they have the same
properties.

 Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int.

21

Pointers and Arrays: Example

int a[10];

int *pa;

pa = &a[0]

x = *pa;

/*same as x = a[0]*/

int y, z;

y = *(pa + 1);

z = *(pa + 2);

22

12

Pointers and Arrays: More Examples

int a[10], *pa;

pa = a;

Notes

a = pa; a++; are illegal. p

/* same as pa = &a[0]*/

pa++;

/*same as pa = &a[1]*/

a[i] *(a+i)

&a[i] a+i

p g
Think of a as a constant, not a
var.

p[-1], p[-2], etc. are
syntactically legal.

pa[i] *(pa+i)

23

Computing String Lengths

/* strlen: return length of string s */

int strlen(char *s) /* or (char s[]) */

{

int n;

for (n = 0; *s != '\0', s++)

n++;

return n;

}

Callers:

strlen("hello, world"); /* string constant */

strlen(array); /* char array[100]; */

strlen(ptr); /* char *ptr; */

24

13

Passing Sub-arrays to Functions

 It is possible to pass part of an
array to a function, by passing
a pointer to the beginning of
the sub-array.

my_func(int ar[]) {...}

or

my_func(int *ar) {...}

my_func(&a[5])

or

my_func(a + 5)

25

Arrays Passed to a Function

 Arrays passed to a function are passed by
referencereference.

 The name of the array is a pointer to its first
element.

 Example:
copy_array(int A[], int B[]);

 The call above does not copy the array in the
function call, just a reference to it.

26

14

Address Arithmetic (5.4)

Given pointers p and q of the same type and integer n, the
following pointer operations are legal:

 p + n, p – n
 n is scaled according to the size of the objects p points to. If p

points to an integer of 4 bytes, p + n advances by 4*n bytes.

 q – p, q – p + 1 (assuming q > p)
 But p + q is illegal!

 q = p; p = q + 100;
 If p and q point to different types, must cast first. Otherwise, the

assignment is illegal!

 if (p == q), if (p != q + n)

 p = NULL;

 if (p == NULL), same as if (!p) 27

Address Arithmetic: Example

/* strlen: return length of string s */

int strlen(char *s)int strlen(char *s)

{

char *p = s;

while (*p != '\0')

p++;

return p - s;p ;

}

28

15

Address Arithmetic: Summary

 Legal:
 assignment of pointers of the same type assignment of pointers of the same type

 adding or subtracting a pointer and an integer

 subtracting or comparing two pointers to members of the same
array

 assigning or comparing to zero (NULL)

 Illegal:
 add two pointers

 multiply or divide or shift or mask pointer variables

 add float or double to pointers

 assign a pointer of one type to a pointer of another type (except for
void *) without a cast

29

Character Pointers and Functions (5.5)

 A string constant (“hello world”) is an array of characters.

 The array is terminated with the null character '\0' so that The array is terminated with the null character \0 so that
programs can find the end.

char *pmessage;

pmessage = "now is the time";

 assigns to pmessage a pointer to the character array. This is not a
string copy; only pointers are involved.

 C does not provide any operators for processing an entire string of
characters as a unit.

30

16

Important Difference between ...

char amessage[] = "now is the time"; /* an array */

char *pmessage = "now is the time"; /* a pointer */p g p

 amessage will always refer to the same storage.

 pmessage may later be modified to point elsewhere.

31

Example: String Copy Function

/* strcpy: copy t to s; array
subscript version */

void strcpy(char *s char *t)

/* strcpy: copy t to s; pointer
version */

void strcpy(char *s char *t)void strcpy(char *s, char *t)

{

int i;

i = 0;

while ((s[i] = t[i]) != '\0')

i++;

}

void strcpy(char *s, char *t)

{

int i;

i = 0;

while ((*s = *t) != '\0') {

s++; t++;

}

}

/* strcpy: copy t to s; pointer
version 2 */

void strcpy(char *s, char *t)

{

while ((*s++ = *t++) != '\0') ;

} 32

17

Dynamic Memory Allocation

CSE 2031

Fall 2010

3325 September 2011

Dynamic Memory Allocation (7.8.5)

How to allocate memory during run time?

int x = 10;

int my_array[x]; /* not allowed in C */

34

18

malloc()

 In stdlib.h

void *malloc(int n);

 Allocates memory at run time.

 Returns a pointer (to a void) to at least n bytes p () y
available.

 Returns null if the memory was not allocated.

 The allocated memory is not initialized.
35

calloc()

void *calloc(int n, int s);

 Allocates an array of n elements where each
element has size s;

 calloc() initializes the allocated memory all to 0.

36

19

realloc()

What if we want our array to grow (or shrink)?

void *realloc(void *ptr, int n);

 Resizes a previously allocated block of memory.
 ptr must have been returned from a previous
calloc malloc or realloccalloc, malloc, or realloc.

 The new array may be moved if it cannot be
extended in its current location.

37

free()

void free(void *ptr)

 Releases the memory we previously allocated.
 ptr must have been returned from a previous
calloc, malloc, or realloc.

 C does not do automatic “garbage collection”.g g

38

20

Example

#include<stdio.h>

#include<stdlib.h>

main() {

int *a, i, n, sum=0;

printf(“Input an aray size “);

scanf(“%d”, &n);

a=calloc(n, sizeof(int));

for(i=0; i<n; i++) scanf(“%d”, &a[i]);

for(i=0; i<n; i++) sum+=a[i];

free(a);

printf(“Number of elelments = %d and the sum is %d\n”,n,sum);

}

39

Next time ...

Structures (Chapter 6)

40

