
1

Arrays and Pointers (part 1)

CSE 2031

Fall 2011

125 September 2011

Arrays

Grouping of data of the same type.

 L l d f i l ti Loops commonly used for manipulation.

 Programmers set array sizes explicitly.

2

2

Arrays: Example

Syntax
type name[size];

Examples
int bigArray[10];

double a[3];double a[3];

char grade[10], oneGrade;

3

Arrays: Definition and Access

 Defining an array: allocates memory
int score[5];int score[5];
Allocates an array of 5 integers named "score"

 Individual parts can be called:
Indexed or subscripted variables
"Elements" of the array

 Value in brackets called index or subscript
Numbered from 0 to (size – 1)

4

3

Arrays Stored in Memory

a[0]
1234

a[0]

a[1]

a[2]

1235

1236

1237

1238

…..

…

…

a[n]

1260

1261 Some other
variables

5

Initialization

• In declarations enclosed in curly braces

int a[5] = {11,22}; Declares array a and initializes first two
elements and all remaining set to zero

int b[] = {1,2,8,9,5}; Declares array b and initializes
all elements and sets the length
of the array to 5

6

4

Array Access

x = ar[2];

ar[3] = 2.7;

What is the difference between
ar[i]++, ar[i++], ar[++i] ?

7

Strings

 No string type in C

 String = array of char String = array of char

 char gretings[] = “Hello”

H e l l o \0

8

5

Pointers

CSE 2031

Fall 2010

9

Pointers and Addresses (5.1)

Memory address of a variable

 Declared with data type, * and identifier
type * pointer_var1, * pointer_var2, …;

 Example.
double * p;
int *p1, *p2;int p1, p2;

 There has to be a * before EACH of the pointer
variables

10

6

Pointers and Addresses (cont.)

• Use the "address of" operator (&)p ()

• General form:

pointer_variable = &ordinary_variable

Name of the pointer Name of ordinary
variable

11

Using a Pointer Variable

 Can be used to access a value

 Unary operator * used Unary operator used
* pointer_variable

 In executable statement, indicates value

 Example
int *p1, v1;
v1 = 0;

Output:
42
42

v1 = 0;
p1 = &v1;
*p1 = 42;
printf(“%d\n“,v1);
printf(“%d\n,*p1);

12

7

Pointer Variables

int x,y;

int * z;

x = 25;
y = x;
z = &x;

1200 1204 1208

int z;

25

9608 8404

25 1204

13

Pointer Variables (cont.)

z= 1024 BAD idea

Instead, use z = &x

14

8

Pointer Types

int x = 25, *y, z;

y = &x;y

25

1200 1204 1208

1204

8404

y ;

z = *y;

9608

25

z 15

Another Example of Pointers
int *p1, *p2, x = 8, y = 9; p1 = &x; p2 = &y;

16

9

More Examples

int x = 1, y = 2, z[10], k;

int *ip; p

ip = &x; /* ip points to x*/

y = *ip; /* y is now 1 */

ip = 0; / x is now 0 */

z[0] = 0;

ip = &z[0]; /* ip points to z[0] */

for (k = 0; k < 10; k++)

z[k] = *ip + k;

*ip = *ip + 100;

++*ip;

(*ip)++; /* How about *ip++ ??? */

17

Pointers and Function Arguments (5.2)

Write a function that swaps
the contents of two

C passes arguments to
functions by values.the contents of two

integers a and b.

void main() {

int a, b;

/* Input a and b */

swap(a, b);

functions by values.

void swap(int x, int y)

{

int temp;

temp = x;
printf(“%d %d”, a, b);

{
x = y;

y = temp;

}

18

10

The Correct Version

void swap(int *px, int *py)

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

void main() {

int a, b;

/* Input a and b */

swap(&a, &b);

printf(“%d %d”, a, b);

{
19

Arrays and Pointers

20

11

Pointers and Arrays (5.3)

 Identifier of an array is equivalent to the address of its
first element.

int numbers[20];
int * p;

p = numbers // Valid
numbers = p // Invalid

 p and numbers are equivalent and they have the same
properties.

 Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int.

21

Pointers and Arrays: Example

int a[10];

int *pa;

pa = &a[0]

x = *pa;

/*same as x = a[0]*/

int y, z;

y = *(pa + 1);

z = *(pa + 2);

22

12

Pointers and Arrays: More Examples

int a[10], *pa;

pa = a;

Notes

a = pa; a++; are illegal. p

/* same as pa = &a[0]*/

pa++;

/*same as pa = &a[1]*/

a[i]  *(a+i)

&a[i]  a+i

p g
Think of a as a constant, not a
var.

p[-1], p[-2], etc. are
syntactically legal.

pa[i]  *(pa+i)

23

Computing String Lengths

/* strlen: return length of string s */

int strlen(char *s) /* or (char s[]) */

{

int n;

for (n = 0; *s != '\0', s++)

n++;

return n;

}

Callers:

strlen("hello, world"); /* string constant */

strlen(array); /* char array[100]; */

strlen(ptr); /* char *ptr; */

24

13

Passing Sub-arrays to Functions

 It is possible to pass part of an
array to a function, by passing
a pointer to the beginning of
the sub-array.

my_func(int ar[]) {...}

or

my_func(int *ar) {...}

my_func(&a[5])

or

my_func(a + 5)

25

Arrays Passed to a Function

 Arrays passed to a function are passed by
referencereference.

 The name of the array is a pointer to its first
element.

 Example:
copy_array(int A[], int B[]);

 The call above does not copy the array in the
function call, just a reference to it.

26

14

Address Arithmetic (5.4)

Given pointers p and q of the same type and integer n, the
following pointer operations are legal:

 p + n, p – n
 n is scaled according to the size of the objects p points to. If p

points to an integer of 4 bytes, p + n advances by 4*n bytes.

 q – p, q – p + 1 (assuming q > p)
 But p + q is illegal!

 q = p; p = q + 100;
 If p and q point to different types, must cast first. Otherwise, the

assignment is illegal!

 if (p == q), if (p != q + n)

 p = NULL;

 if (p == NULL), same as if (!p) 27

Address Arithmetic: Example

/* strlen: return length of string s */

int strlen(char *s)int strlen(char *s)

{

char *p = s;

while (*p != '\0')

p++;

return p - s;p ;

}

28

15

Address Arithmetic: Summary

 Legal:
 assignment of pointers of the same type assignment of pointers of the same type

 adding or subtracting a pointer and an integer

 subtracting or comparing two pointers to members of the same
array

 assigning or comparing to zero (NULL)

 Illegal:
 add two pointers

 multiply or divide or shift or mask pointer variables

 add float or double to pointers

 assign a pointer of one type to a pointer of another type (except for
void *) without a cast

29

Character Pointers and Functions (5.5)

 A string constant (“hello world”) is an array of characters.

 The array is terminated with the null character '\0' so that The array is terminated with the null character \0 so that
programs can find the end.

char *pmessage;

pmessage = "now is the time";

 assigns to pmessage a pointer to the character array. This is not a
string copy; only pointers are involved.

 C does not provide any operators for processing an entire string of
characters as a unit.

30

16

Important Difference between ...

char amessage[] = "now is the time"; /* an array */

char *pmessage = "now is the time"; /* a pointer */p g p

 amessage will always refer to the same storage.

 pmessage may later be modified to point elsewhere.

31

Example: String Copy Function

/* strcpy: copy t to s; array
subscript version */

void strcpy(char *s char *t)

/* strcpy: copy t to s; pointer
version */

void strcpy(char *s char *t)void strcpy(char *s, char *t)

{

int i;

i = 0;

while ((s[i] = t[i]) != '\0')

i++;

}

void strcpy(char *s, char *t)

{

int i;

i = 0;

while ((*s = *t) != '\0') {

s++; t++;

}

}

/* strcpy: copy t to s; pointer
version 2 */

void strcpy(char *s, char *t)

{

while ((*s++ = *t++) != '\0') ;

} 32

17

Dynamic Memory Allocation

CSE 2031

Fall 2010

3325 September 2011

Dynamic Memory Allocation (7.8.5)

How to allocate memory during run time?

int x = 10;

int my_array[x]; /* not allowed in C */

34

18

malloc()

 In stdlib.h

void *malloc(int n);

 Allocates memory at run time.

 Returns a pointer (to a void) to at least n bytes p () y
available.

 Returns null if the memory was not allocated.

 The allocated memory is not initialized.
35

calloc()

void *calloc(int n, int s);

 Allocates an array of n elements where each
element has size s;

 calloc() initializes the allocated memory all to 0.

36

19

realloc()

What if we want our array to grow (or shrink)?

void *realloc(void *ptr, int n);

 Resizes a previously allocated block of memory.
 ptr must have been returned from a previous
calloc malloc or realloccalloc, malloc, or realloc.

 The new array may be moved if it cannot be
extended in its current location.

37

free()

void free(void *ptr)

 Releases the memory we previously allocated.
 ptr must have been returned from a previous
calloc, malloc, or realloc.

 C does not do automatic “garbage collection”.g g

38

20

Example

#include<stdio.h>

#include<stdlib.h>

main() {

int *a, i, n, sum=0;

printf(“Input an aray size “);

scanf(“%d”, &n);

a=calloc(n, sizeof(int));

for(i=0; i<n; i++) scanf(“%d”, &a[i]);

for(i=0; i<n; i++) sum+=a[i];

free(a);

printf(“Number of elelments = %d and the sum is %d\n”,n,sum);

}

39

Next time ...

Structures (Chapter 6)

40

