
1

Types, Operators and

Expressions

CSE 2031

Fall 2011

19/11/2011 5:24 PM

Variable Names (2.1)

� Combinations of letters, numbers, and underscore
character (_) that
� do not start with a number;

� are not a keyword.

� Upper and lower case letters are distinct (x ≠ X).

� Examples: Identify valid and invalid variable names

abc, aBc, abc5, aA3_ , char, _360degrees,
5sda, my_index, _temp, string, struct,
pointer

2

2

Variable Names: Recommendations

� Don’t begin variable names with underscore _

� Limit the length of a variable name to 31 characters or
less.

� Function names, external variables: may be less than 31
characters allowed, depending on systems.

� Lower case for variable names.

� Upper case for symbolic constants
� #define MAX_SIZE 100

� Use short names for local variables and long names for
external variables.

3

Data Types and Sizes (2.2)

4 basic types in C

� char – characters (8 bits)

� int ─ integers (either 16 or 32 bits)

� float – single precision floating point numbers

(4 bytes)

� double – double precision floating point

numbers (8 bytes)

4

3

Qualifiers

� signed char sc; /* -127 – +128 */

� unsigned char uc; /* 0 – +255 */

� short s; /* 16 bits, -32,768 - +32,767 */

� short int s;

� long counter; /* 32 bits */

� long int counter;

� int is either 16 or 32 bits, depending on systems.

� signed int sint; /* same as int
sint; */

� unsigned int uint;

� 0 – +4,294,967,295, assuming 4-byte int

� long double ld; /* 12 bytes */
5

Qualifiers (cont.)

� <limits.h> and <float.h> contain

�symbolic constants for all of the above sizes,

�other properties of the machine and compiler.

� To get the size of a type, use sizeof()

int_size = sizeof(int);

6

4

Characters

� 8 bits

� Included between 2 single quotes

char x =‘A’

� Character string: enclosed between 2 double quotes

“This is a string”

� Note: ‘A’ ≠ “A”

� c =‘\012’ /* 10 decimal; new line character */

A A \0

7

Characters

8

5

Constants (2.3)

�Numeric constants

�Character constants

�String constants

�Constant expressions

�Enumeration constants

9

Integer Constants

� Decimal numbers
�123487

� Octal: starts with 0 (zero)
�0654

� Hexadecimal: starts with 0x or 0X
�0x4Ab2, 0X1234

� long int: suffixed by L or l
�7L, 106l

� unsigned int: suffixed by U or u
�8U, 127u

10

6

Floating-point Constants

15.75

1.575E1 /* = 15.75 */

1575e-2 /* = 15.75 */

-2.5e-3 /* = -0.0025 */

25E-4 /* = 0.0025 */

� If there is no suffix, the type is

considered double (8 bytes).

� To specify float (4 bytes), use

suffix F or f.

� To specify long double (12

bytes), use suffix L or l.

100.0L /* long double */

100.0F /* float */

� You can omit the integer

portion of the floating-point

constant.

.0075e2

0.075e1

.075e1

75e-2

11

Numeric Constants

� 2010

� 100000

� 729L or 729l

� 2010U or 2010u

� 20628UL or 20628ul

� 24.7 or 1e-2

� 24.7F or 24.7f

� 24.7L or 24.7l

� 037

� 0x1f, 0X1f, 0x1F

� 0XFUL

� int

� will be taken as long

� long (int)

� unsigned

� unsigned long

� double

� float

� long double

� octal (= 31 decimal)

� hexadecimal (= 31)

� What is this?
12

7

Character Constants

‘x’

‘2’

‘\0’

#define NEW_LINE ‘\012’

#define NEW_LINE ‘\12’

#define SPACE ‘\x20’

� letter x

� numeric value 50

� NULL char, value 0

� octal, 10 in decimal

� ‘\ooo’ 1 to 3 octal digits

� hex, 32 in decimal

13

Escape Sequences

14

8

String Constants

“hello, world\n”

“” /* empty string */

\” /* double quote character */

“hello,” “ world” same as “hello, world”

� concatenated at compile time

� useful for splitting up long strings across several source

lines.

15

Constant Expressions

� Expressions that involve only constants.

� Evaluated during compilation.

#define MAXLINE 1000

char line[MAXLINE+1];

#define LEAP 1 /* in leap years */

int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

16

9

Enumeration Constants

enum boolean { NO, YES };

� The first name in an enum has value 0, the next 1, and

so on, unless explicit values are specified.
enum colours { black, white, red, blue, green };

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB =
'\t', NEWLINE = '\n', VTAB = '\v', RETURN = '\r'
};

� If not all values are specified, unspecified values

continue the progression from the last specified value.
enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,

AUG, SEP, OCT, NOV, DEC };

/* FEB = 2, MAR = 3, etc. */

17

Limits

� File limits.h provides several constants

� char CHAR_BIT, CHAR_MIN, CHAR_MAX,
SCHAR_MIN, …

� int INT_MIN, INT_MAX, UINT_MAX

� long LONG_MIN, …

� You can find FLOAT_MIN, DOUBLE_MIN, Q in

<float.h>

18

10

Declarations (2.4)

� All variables must be declared before use (certain

declarations can be made implicitly by content).

� A variable may also be initialized in its declaration.

char esc = '\\';

int i = 0;

int limit = MAXLINE+1;

float eps = 1.0e-5;

19

Qualifier const

� Indicates that the value of a variable will not be changed.

� For an array: the elements will not be altered.

const double e = 2.71828182845905;

const char msg[] = "warning: ";

� Used with array arguments, to indicate that the function

does not change that array.

int strlen(const char[]);

� Note: The result is implementation-defined if an attempt

is made to change a const.
20

11

Arithmetic Operators (2.5)

+ ─ * / %

Examples:

abc = x + y * z;

j = a % i;

++x;

x++;

x += 5; /* x = x + 5; */

y /= z; /* y = y / z */

What is x *= y + 1 ?

21

Precedence and Associativity

22

12

Type Conversion (2.7)

� float f; int i; What is the type of f+i ?

� General rule: convert a “narrower” operand into a “wider”

one without losing information.

� So i is converted to float before the addition.

� char may be freely used in arithmetic expressions.

/* lower: convert c to lower case; ASCII only */

int lower(int c)

{

if (c >= 'A' && c <= 'Z')

return c – 'A' + 'a';

else return c;

}
23

Arithmetic Conversion

� When a binary operator has operands of different types,

the “lower” type is promoted to the “higher” type before

the operation proceeds.

� If either operand is long double, convert the other to long

double.

� Otherwise, if either operand is double, convert the other

to double.

� Otherwise, if either operand is float, convert the other to

float.

� Otherwise, convert char and short to int.

� Then, if either operand is long, convert the other to long.

24

13

Arithmetic Conversion: Examples

int

int
int

double

double
double

int

double
double

int a=5, b=2, c;

double x, y = 2;

x = a/b;

// x = 2.0

c = a/b;

// c = 2

x = a/y;

// x = 2.5

c = a/y;

// c = 2

25

More Examples

� 17 / 5
�3

� 17.0 / 5
�3.4

� 9 / 2 / 3.0 / 4
�9 / 2 = 4

�4 / 3.0 = 1.333

�1.333 / 4 = 0.333

26

14

Type Conversion: More Rules

� Conversions take place

across assignments; the

value of the right side is

converted to the type of

the left, which is the type

of the result.

� Example:
int a;

float x = 7, y = 2;

a = x / y;

� float to int causes

truncation of any

fractional part.

� Example:
float x, y = 2.7;

int i = 5;

x = i; /* x = 5.0 */

i = y; /* i = 2 */

27

Type Conversion: Even More Rules

� Longer integers are converted

to shorter ones or to chars by

dropping the excess high-order

bits.

int i;

char c;

i = c;

c = i;

/* c unchanged */

int i;

char c;

c = i;

i = c;

/* i may be changed */

28

15

Casting

int A = 9, B = 2;

double x;

x = A / B; /* x is 4.0 */

x = A / (double)B; /* C is 4.5 */

int n;

sqrt(double(n))

� The cast operator has the same high precedence as
other unary operators.

Doesn’t change the value of B,

just changes the type to double

29

Increment and Decrement Operators (2.8)

� ++ or --

� Placing in front: incrementing or decrementing occurs BEFORE

value assigned

� Placing after: occurs AFTER value assigned

k = i++;

k = ++i;

i = 2 and k = 1

k =--i;

k = i--;

i = i + 1;

k = i;

3

3

i = i - 1;

k = i;

1

1

k = i;

i = i + 1;

2

3

k = i;

i = i - 1;

2

1

i = 2 and k = 1

30

16

Precedence and Associativity

31

Examples

int a=2, b=3; c=5, d=7, e=11, f=3;

f += a/b/c;

d -= 7+c*--d/e;

d = 2*a%b+c+1;

a += b +=c += 1+2;

3

-3

7

13

32

17

Relational and Logic Operators (2.6)

� Relational operators:

> >= < <=

== !=

� Logical operators:

! && ||

� Evaluation stops as

soon as the truth or

falsehood of the result

is known.

for (i=0;

i < lim-1 &&
(c=getchar()) != '\n' &&
c != EOF;

++i)

s[i] = c;

if (valid == 0)

/* same as */

if (!valid)

33

Boolean Expressions

� False is 0; any thing else is 1 (true).

� Write

if (!valid)

instead of

if (valid == 0)

34

18

Bitwise Operators (2.9)

� Work on individual bits

& | ^ ~

� Examples:

short int i=5, j=8;

k=i&j;

k=i|j;

k=~j;

a =1;

b = 2;

c = a & b; /*c = 0*/

d = a && b; /*d = 1*/

� Application: bit masking

n = n & 0177;

x = x | SET_ON;

35

Bit Shifting

� x<<y means shift x to the left y times.

� equivalent to multiplication by 2y

� x>>y means shift x to the right y bits.

� equivalent to division by 2y

� Left shifting 3 many times:

0 3

1 6

2 12

3 24

4 48

5 ...

13 49512

14 32768
36

19

Right Shifting

� It could be logical (0) or arithmetic (signed)

� If unsigned, 0; if signed undefined in C

unsigned int i = 714;

357 178 89 44 22 11 5 2 1 0

� What if i = -714 ?

-357 -178 -89 . . . -3 -2 -1 -1 -1 -1

37

Bitwise Operators: Examples

x = x & ~077;

sets the last six bits of x to zero.

/* getbits: get n bits from position p */

unsigned getbits(unsigned x, int p, int n)

{

return (x >> (p+1-n)) & ~(~0 << n);

}

38

20

Assignment Operators / Expressions (2.10)

� A *= B; // equivalent to

� A = (A) * (B); // note the parentheses

� Can be used with: + ─ * / % << >> & ^ |

yyval[yypv[p3+p4] + yypv[p1]] += 2

/* bitcount: count 1 bits in x */

int bitcount(unsigned x) {

int b;

for (b = 0; x != 0; x >>= 1)

if (x & 01)

b++;

return b;

}
39

Conditional Expressions (2.11)

exp1 ? exp2 : exp3

� If exp1 is true, the value of the conditional
expression is exp2; otherwise, exp3.

z = (a > b)? a : b; /* z = max (a, b)*/

� If expr2 and expr3 are of different types, the type of

the result is determined by the conversion rules

discussed earlier.

int n; float f;

(n > 0) ? f : n

/* result of type float in either case */
40

21

Conditional Expressions: Advantage

� Succinct code

� Example 1:

for (i = 0; i < n; i++)

printf("%6d%c", a[i],

(i%10==9 || i==n-1) ? '\n' : ' ');

� Example 2:

printf("You have %d item%s.\n", n,

n==1 ? "" : "s");

41

Precedence and Order of Evaluation (2.12)

42

22

Next time ...

� Control Flow (Chapter 3, C book)

� Functions and program structures (Chapter 4, C

book)

� Basic UNIX (Chapter 1, UNIX book)

43

