
1

Introduction to C

CSE 2031

Fall 2011

19/11/2011 5:23 PM

History

� Widely used, powerful, and fast.

� Both started at AT&T Bell Labs.

� UNIX was written in assembly, later changed to

C.

� Many variants of UNIX.

2

2

C vs. Java

� Java-like (actually Java has a C-like syntax),

some differences

� No //, only /* */ multi-line and no nesting

� No garbage collection

� No classes

� No exceptions (try 9 catch)

� No type strings

3

First C Program

#include <stdio.h>

main() {

printf(“hello, world \n”);

}

Note: #include <filename.h> replaces the

line by the actual file before compilation starts.

4

3

Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character

\’ Single quote

5

More Examples

� We will discuss more programs given in Chapter 1 in

class.

� We will then learn basic input and output in C.

6

4

Basic Input and Output

CSE 2031

Fall 2010

711 September 2011

Basic I/O

� Every program has a standard input and output.

� Usually, keyboard and monitor, respectively.

� Can use > and < for redirection

printf(“This is a test %d \n”, x)

scanf(“%x %d”, &x, &y)

%d %s %c %f %lf

integer string character float double precision
8

5

getchar() (7.1)

� To read one character at a time from the

standard input (the keyboard by default):

int getchar(void)

� returns the next input char each time it is called;

� returns EOF when it encounters end of file.

�EOF input: Ctrl-d (Unix) or Ctrl-z (Windows).

�EOF value defined in <stdio.h> is -1.

9

putchar(c) (7.1)

� Puts the character c on the standard output (the

screen by default).

int putchar(int)

� returns the character written;

� returns EOF if an error occurs.

10

6

Example

#include <stdio.h>

#include <ctype.h>

main() /* convert input to lower case*/

{

int c;

c = getchar();

while (c != EOF) {

putchar(tolower(c));

c = getchar();

}

return 0;

}
11

Example: more compact code

#include <stdio.h>

#include <ctype.h>

main() /* convert input to lower case*/

{

int c;

while ((c = getchar()) != EOF)

putchar(tolower(c));

return 0;

}

12

7

I/O Redirection

prog < infile

� prog reads characters

from infile instead of the

standard input.

otherprog | prog

� Output from otherprog is

the input to prog.

prog > outfile

� prog writes to outfile

instead of the standard

output.

prog | anotherprog

� puts the standard output

of prog into the standard

input of anotherprog.

13

printf() (7.2)

int printf(char *format, arg1, arg2, ...);

� converts, formats, and prints its arguments on

the standard output under control of the
format.

� returns the number of characters printed (usually

we are not interested in the returned value).

14

8

printf() Examples

printf(“:%s:”, “hello, world”);

printf(“:%10s:”, “hello, world”);

printf(“:%.10s:”, “hello, world”);

printf(“:%-10s:”, “hello, world”);

printf(“:%.15s:”, “hello, world”);

printf(“:%-15s:”, “hello, world”);

printf(“:%15.10s:”, “hello, world”);

printf(“:%-15.10s:”, “hello, world”);

15

printf Conversions

16

9

Output Formatting with printf()

� A minus sign, which specifies left adjustment of the converted

argument.

� A number that specifies the minimum field width. The converted

argument will be printed in a field at least this wide. If necessary it

will be padded on the left (or right, if left adjustment is called for) to

make up the field width.

� A period, which separates the field width from the precision.

� A number, the precision, that specifies the maximum number of

characters to be printed from a string, or the number of digits

after the decimal point of a floating-point value, or the minimum

number of digits for an integer.

17

scanf() (7.4)

� scanf() is the input analog of printf().

� To read an integer:

int num;

scanf("%d”, &num);

� &num is a pointer to num.

� To read a char and a float:

char c; float f;

scanf("%c %f”, &c, &f);

18

10

scanf Conversions

19

scanf()

int scanf(char *format, arg1, arg2, ...);

� reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the

remaining arguments.

� stops when it exhausts its format string, or when some input fails to

match the control specification.

� returns the number of successfully matched and assigned input

items (e.g., to decide how many items were found).

� returns 0 if the next input character does not match the first

specification in the format string (i.e., an error).

� On the end of file, EOF is returned.

� Note: arg1, arg2, ... must be pointers!

20

11

Next time ...

� Types, Operators and Expressions (Chapter 2)

21

