
1

Functions and Program Structure

CSE 2031

Fall 2011

14 December 2011

Function Basics (4.1)

 Functions
Brake large computing tasks into smaller: During theBrake large computing tasks into smaller: During the 

design stage try to separate small tasks that may be 
implemented as single function.

Can be reused

 Scopep
Where the name can be used/visible?

2



2

Definition and Declaration

 Declaration

returned_type function_name ( list_of_arguments ) ;

 Definition
returned_type function_name ( list_of_arguments )

{

declarations  and  statements

}

 Return statement
return expresssion ;

3

return Statement (4.2)

 Functions use return statement to return the 
result to the callerresult to the caller.

return expression;

 Functions can return arbitrary type: void, int, 
double, pointer (to the variable or function), etc.

 Inconsistent expressions will be cast to the 
t d t f th f tireturned type of the function.

4



3

External Variables (4.3)

 Internal variables
Defined inside of the function body and exists only whenDefined inside of the function body and exists only when 

the function is executed.

 External objects
External variables and function are defined outside of 

any function.

External variables may be used as a tool to 
communicate between functions.

5

External Variables (cont.)

 Problems with external variables
Everyone can access the variable (like public variablesEveryone can access the variable (like public variables 

in Java).

Low level of control.

Too many externals leads to bad program structure with 
too many data connections between functions (problem 
with modularity and reusing).

B tt li Bottom line:
Avoid external variables whenever possible!

6



4

Scope (4.4)

 Scope is a part of the program within which a declared 
name can be used.name can be used.

 Questions of interest:
 How to write declarations so that variables are properly

 declared during compilation?

 How are declarations arranged so that all the pieces will be 
properly connected when program is loaded?

 How are declarations organized so there is only one copy?g y py

 How external variables are initialized (so that all of them are 
initialize once)?

7

extern Declaration

In order to use a variable in 
another file or before its definition. 

file1.c

extern int size ;

extern char buff[ ] ;

file2.c

int size = SIZE ;

char buff[SIZE] ;

8



5

Declaration vs. Definition

Declaration: announces the 
properties of a variable (type).

Definition = Declaration + Storage 
to be set aside.

file 1.c

extern int sp;

extern double val[ ];

file2.c

int sp = 0;

double val[MAXVAL];

9

Static Variables (4.6)

 static declaration restricts 
(hide) the visibility (scope) of a 

/* File io.c */

variable or a function.

 Static external variables: 
visible only in the source file in 
which they are defined.

 Example: routines in Comp.c
and Main.c cannot access 
buf[] or bufp.

#include <stdio.h>

static char buf[BUFSIZE];

static int bufp = 0;

int getch(void) { ... }

 Those variable names can be 
used in Comp.c and Main.c for 
other variables without any 
conflict since they are not 
visible outside io.c.

void ungetch(int c) { ... }

/* end of file io.c */

10



6

Project

Comp.o Main.o io.o

io.h io.cMain.cCommon.hComp.c

Project1: Comp.o main.o io.o
C i i P jcc Comp.o main.o io.o –o Project

Comp.o : Comp.c Common.h
cc –c Comp.c

Main.o: Main.c Common.c io.h
cc –c Main.c

io.o: io.h io.c
cc –c io.c

cc -c: stop compiler after producing 
the object file, do not link.

Static Variables (cont.)

 Static function: its name is 
invisible outside of the file in 

static int power 

(int base, int n) {
which it is declared.

 Note: function names are 
normally global.

 Static internal variable:
 visible only inside the function 

in which it is defined.

 remains in existence (not 

...

}

int getline(char s[]) {

static int counter;
coming and going each time 
the function is called).

 provide private, permanent 
storage within a single 
function.

int next;

...

}

12



7

Register Variables (4.7)

 register declaration advises the compiler that the 
variable will be heavily used.variable will be heavily used.

 The register variable will be placed in machine registers 
 smaller, faster program.

 Compilers are free to ignore the advice.

 Examples:

register int i;

register char c;

my_func( register long x, register unsigned y ) 

13

Register Variables (cont.)

Restrictions due to underlying hardware:

O l f i t il blOnly a few registers available.

Only certain types are allowed.
Excess/disallowed declarations are treated as normal 

variables.

 Not possible to take address of a register var.

14



8

Block Structure (4.8)

 Block: delimited by { and }
if (n > 0) {if (n > 0) {

int i; /* declare a new i */

for (i = 0; i < n; i++)

...

}

 i is initialized each time the block is entered.

 A static variable is initialized only the first time the block A static variable is initialized only the first time the block 
is entered. 

15

Block Structure (cont.)

int x;

intint y;

...

f(double x)

{

double y;

}

 The above works, but avoid that programming style!

16



9

Initialization (4.9)

Explicit initialization int x = 1;

char squota = '\'';

l d 1000 * 60 * 60 *

 External and static vars: 
must be constant 
expressions

 Automatic and register 

long day = 1000L * 60L * 60L * 
24L; /* milliseconds/day */

int binsearch(int x, int v[], 
int n)

{

int low = 0;

int high = n - 1;

int mid;vars: any expressions 
(involving pre-defined 
values or function calls)

int mid;

...

}

17

Initialization (cont.)

No explicit initialization

 E t l d t ti i iti li d t 0 External and static vars: initialized to 0.

 Automatic and register vars: undefined 
(garbage) initial values.

Arrays:
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 

30, 31 };  /* array of size 12 */

int months[12] = { 100, 25, 75 };  /* the rest is 0*/

char pattern = "ould";  /* same as below */

char pattern[] = { 'o', 'u', 'l', 'd', '\0' };

18



10

Recursion (4.10)

 In C, a function may call 
itself either directly or

#include <stdio.h>

itself either directly or 
indirectly. /* print n in decimal */

void printd(int n)

{

if (n < 0) {

putchar('-');

n = -n;

}

if (n / 10)

printd(n / 10);

putchar(n % 10 + '0');

}
19

Recursion (cont.)

 Advantages:
More compact codeMore compact code

Easier to write and understand

 Disadvantage: more overhead for recursive 
function calls
Stack

Parameter saving and returningParameter saving and returning

20



11

Macro Substitution (4.11.2)

 #define name  replacement  text
 subsequent occurrences of the token name will be replaced by the subsequent occurrences of the token name will be replaced by the 

replacement text.

 Examples:

#define max(A, B) ((A) > (B) ? (A) : (B))

x = max(p+q, r+s);

/* x = ((p+q) > (r+s) ? (p+q) : (r+s)); */

i = 1; j = 10; 

y = max(i++, j++);   /* final values of i and j ?*/

#define square(x) x * x   /* what’s wrong? */

z = square(y + 1);
21

Final Exam

 December 16, 14:00-17:00.

22


