
1

File Access (7.5)

CSE 2031

Fall 2011

16 November 2011

Declaring and Opening Files

FILE *fp; /* file pointer */

FILE *fopen(char *name char *mode);FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;

char iname[50], oname[50];

ifp = fopen(iname, "r");p p (,);

if (ifp == NULL) { ... }

ofp = fopen(oname, "w");

2

2

Modes

fp = fopen(name, "r");

 Returns NULL if file does not exist or has no read Returns NULL if file does not exist, or has no read
permission.

fp = fopen(name, “w");

 If file does not exist, one will be created for writing.

 If file already exists, the content will be erased when the
file is opened. So be careful!

 Returns NULL if file has no write permission.

3

Modes (cont.)

fp = fopen(name, “a"); /* append */

 If file does not exist one will be created for writing If file does not exist, one will be created for writing.

 If file already exists, the content will be preserved.

 Returns NULL if file has no write permission.

 May combine multiple modes.
fp = fopen(name, "rw");p p (,);

File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");

fp = fopen(name, “aw"); /* same as “a” */
4

3

Reading and Writing Files

int getc(FILE *fp)

int putc(int c, FILE *fp)p p

int fscanf(FILE *fp, char *format, ...)

int fprintf(FILE *fp, char *format, ...)

int c;

while ((c = getc(ifp)) != EOF)

putc(c, ofp);

char ch;

while (fscanf(ifp, “%c”, &ch) != EOF)

fprintf(ofp, “%c”, ch);

5

Closing Files

int fclose(FILE *fp)

fclose(ifp);

fclose(ofp);

 Most operating systems have some limit on the number of files that
a program may have open simultaneously free the file pointers
when they are no longer neededwhen they are no longer needed.

 fclose is called automatically for each open file when a program
terminates normally.

 For output files: fclose flushes the buffer in which putc is
collecting output.

6

4

Reminder: I/O Redirection

 In many cases, I/O redirection is simpler than using file
pointers.pointers.

a.out < input_file > outout_file

a.out < input_file >> outout_file

7

