File Access (7.5)

CSE 2031
Fall 2011

6 November 2011 1

Declaring and Opening Files

FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:

FILE *ifp, *ofp;

char iname[50], oname[50];
ifp = fopen(iname, r");
if (ifp==NULL) { .-- }
ofp = fopen(oname, "w");

Modes

fp = fopen(name, "'r");
Returns NULL if file does not exist, or has no read
permission.

fp = fopen(name, “w");
If file does not exist, one will be created for writing.

If file already exists, the content will be erased when the
file is opened. So be careful!

Returns NULL if file has no write permission.

Modes (cont.)

fp = fopen(name, “a"); /* append */
If file does not exist, one will be created for writing.
If file already exists, the content will be preserved.
Returns NULL if file has no write permission.

May combine multiple modes.

fp = fopen(name, "rw");
File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");

fp = fopen(name, ““aw™); /* same as “a” */

Reading and Writing Files

int getc(FILE *fp)
int putc(int c, FILE *fp)

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)
int c;

while ((c = getc(ifp)) = EOF)
putc(c, ofp);

char ch;
while (fscanf(1ifp, “%c”, &ch) 1= EOF)
fprintf(ofp, “%c”, ch);

Closing Files
int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

Most operating systems have some limit on the number of files that
a program may have open simultaneously = free the file pointers

when they are no longer needed.

fclose is called automatically for each open file when a program

terminates normally.

For output files: fclose flushes the buffer in which putc is

collecting output.

Reminder: I/0O Redirection

In many cases, /O redirection is simpler than using file
pointers.

a.out < 1nput_file > outout_fTile

a.out < 1nput_file >> outout_file

