CSE 2031

Page 1 of 4

LAB 4 ─ Arrays and Pointers
Problem A

A.1 Specification
Write a C program to input a line of characters and store the input characters in an array. Reverse the order of the input characters and display the reversed string on the standard output using printf.

A.2 Implementation

· The program is named lab4a.c. Use the given template lab4a.c and fill in your code.

· You are given an array of characters of size MAX_SIZE where MAX_SIZE = 100. The array is named my_strg.

· Use getchar and a loop to read a line of characters, and store the input characters into the array. The loop terminates when a new line character ‘\n’ is entered. The new line character ‘\n’ is NOT part of the line (i.e., discard the new line character ‘\n’).

· Reverse the order of the input characters stored in the array.

· Display on the standard output the reversed string using the printf statement as follows:

printf("%s\n", my_strg);
· This is the same problem as lab3. The difference is that you are now given two pointer variables, p and v, that point to array my_strg. In your code, do not use variable my_strg. Use only p and v (and additional variables other than arrays, if needed) to manipulate the array elements. That is, you should never have to type the text "my_strg" when coding.

A.3 Sample Inputs/Outputs
indigo 352 % lab4a
Hello, world!

!dlrow ,olleH

indigo 353 % lab4a
Welcome to CSE2031.

.1302ESC ot emocleW

indigo 354 % lab4a
A

A

indigo 355 % lab4a
123

321

indigo 356 % lab4a
Problem B

B.1 Specification

Write a C program to input a line of characters in the form of a floating-point number, convert the line of characters into an actual floating-point number, and display on the standard output the floating-point number.

B.2 Implementation
· The program is named lab4b.c. Use the given template lab4b.c and fill in your code.

· You are given an array of characters of size MAX_SIZE where MAX_SIZE = 100. The array is named my_strg.

· Use getchar and a loop to read a line of characters, and store the input characters into array my_strg. The loop terminates when a new line character ‘\n’ is entered. The new line character ‘\n’ is NOT part of the line (i.e., discard the new line character ‘\n’).

· The input line contains only characters ‘0’ to ‘9’ and the dot character ‘.’ in the form of a valid positive floating point number of the following format: [integer part] . [fractional part]
· Convert the input line of characters to a double floating-point number which is stored in variable my_number.

· Display on the standard output the double floating-point number my_number using the printf statement as follows:

printf("%.6f\n", my_number);
· Assume that the input line of characters represents a valid floating point number of the form [integer part] . [fractional part]
B.3 Sample Inputs/Outputs

indigo 360 % lab4b

24.5

24.500000

indigo 361 % lab4b

76.24

76.240000
indigo 362 % lab4b

100.0

100.000000
indigo 363 % lab4b

0.255

0.255000

indigo 364 % lab4b

12.9999999999

13.000000

indigo 365 % lab4b

1.00000000099

1.000000

indigo 366 % lab4b

Common Notes

All submitted files should contain the following header:

/***************************************
*
CSE2031 – Lab 4

 *
*
Filename:
Name of file

 *

*
Author: Last name, first name
 *

*
Email: Your email address

 *

*
cse_num: Your cse number
 *

**/
In addition, all programs should follow the following guidelines:

· Include the stdio.h library in the header of your .c files.

· Use printf to print text and outputs according to the required formats.
· End each output result with a new line character ‘\n’.
· Do not use any C library functions except getchar(), putchar(), scanf() and printf().
· Assume that all inputs are valid (no error checking is required on inputs).
