State Pattern

Nadine Dulisch

Contents
| |
| |
| |
| |
| |
| |

State Pattern 2 /18

What is the State Pattern?
Motivation (example)

Structure

Context

Implementation (example, with demo)

Consequences

What is the State Pattern? 1/2

m comparison: finite state automaton

N
(o\oy2e
%\"‘w: T

/-—30\

OM,/ oS | Caxeis)

N -H‘cun%l

State Pattern 3/18

What is the State Pattern? 2/2

m way to allow an object to alter its behavior and functionality
depending on its internal values

m state changes according to the values

m states represented by objects

State Pattern 4 /18

Motivation (example) 1/2

public class Product {
private String name;
private int numberInStock:
private int itemsSold:

public Product(String name, int numberInStock){
this.name = name;
this.numberInStock = numberInStock:

public String getName () {
return name;

H

public void setName (String name){
this.nams = name:

H

public int getNumberInStock(){[

public void sell(int itemsSold)({
if(itemsSold > numberInStock){
itemsSold = numberInStock;
this.itemsSold += itemsSold;

numberInStock -= itemsSold;
H
else{
this.itemsSold += itemsSold;
numberInStock —= itemsSold
H

public void restock(int itemsRestocked){
numberInStock += itemsRestocked;

ate Pattern

Motivation (example) 2/2

m Problem:

m we want the object to respond differently to requests according
to its current state

= we have to determine if we are low on product or if we have
enough, when changes are made to the object

m to determine the state of the object, we have to perform
calculations outside of it

m with large and numerous conditional statements, code can
become complex and confusing

m Key idea:

m Use a state object, that can change itself as the context object
(Product) changes to determine the context state

State Pattern 6 /18

Structure 1/2

State Pattern

StateContext State
Request() | KoM Handle()

|
| i
I

state -» Hanglleqy o

ConcreteStateA ConcreteStateB
Handle() Handle()

7/18

Structure 2/2

m Context

holds the State and is referenced by it

delegates state-specific requests to the current ConcreteState
object

may pass itself to the State object (to give it access to the
context)

used by clients

m State

abstract superclass for individual states
defines interface common to all concrete state classes

m ConcreteState

subclass for an individual state
implements behavior associated with the state it represents

— either Context or ConcreteState subclasses decide about the
transition between states

State Pattern 8 /18

Context

m an object’s behavior depends on its state (and changes it at
runtime)

m objects have large, mulitpart conditional statements that
depend on the state

- state usually represented by constants
- several operations often contain same conditional structure

State Pattern 9 /18

Implementation 1/6

(StateCorntext)

14

Product

- name: String
state: State

+ Productitring, int)

+ getMame(): String

+ sethame(String): void
+ gethumieringtack(): int
+ getitemsSold()

+ selifint): vaoid

+ restockiint): vaid

Siaie

product: Product
numherinstock: int
itemsSold: int

State Pattern

+ getProduct(): Product

+ setProduct{Product): void
+ getMumberinstocki): int
+ getitemsSold()

+ selifing): vaid

+ restock(ing); void

NormalstockState

LowStockState

+ NormalstockStatedint, Product)
+ MormalStockStatel State)

+ selifint): vaoid

+ restockiint): vaid

+ LowStockState| State)
+ sell(int): void
+ restock(int); void

10 / 18

Imple

mentation 2/6

public class Product {

ate Pattern

private String name:
protected State state;

public Product (String name, int numberInStock){
this.name = name;
state = new NormalStockState (numberInStock, this):

public String getName () {
return name:

}

public void setName (String name) {
this.name = name;

H

public int getMumberInStock(){
return state.numberInStock;

H

public int getTtemsSold(){
return state.itemsSold;

public void sell(int itemsSold){
state.sell (itemsSold);

public void restock(int itemsRestocked){
state.restock (itemsRestocked);

Implementation 3/6

public abstract class State {
protected Product product:
protected int numberInStock;
protected int itemsSeold:

public Product getProduct(){
return product:

}

public void setProduct (Product product){
this.product = product:

}

public int getNumberInStock(){
return numberIndtock;

}

public int getItemsSold(){
return itemsSold;

abstract public void sell(int itemsSold):
abstract public void restock(int itemsRestocked);

ate Pattern

Implementation 4/6

public class NormalStockState extends 3tate{

public NormalStockState (int numberInStock, Product product){
this.numberInStock = numberInStock:
this.itemsSold = 0;
this.product = product:

public NormalStockState (State state){
this.numberInStock = state.numberInStock;
this.itemsSold = state.itemsSold:
this.product = state.product;

public void sell{int itemsSold){

if(itemsSold >= this.numberInStock){
this.product.state = new LowStockState (this);
this.product.state.sell (itemsSold) :

H

elsef
this.itemsSold += itemsSold;
this.numberInStock -= itemsSold;

public void restock(int itemsRestocked){
this.numberInStock += itemsRestocked:

ate Pattern

Implementation 5/6

public class LowStock3tate extends Statef{

public LowStockState (State state){
this.numberInStock = state.numberInStock:
this.itemsSold = state.itemsSold;
this.product = state.product;:

public void sell{int itemsSold){
if (itemsSold >= numberInStock){
itemsSold = numberInStock:
this.itemsSold += itemsSold;

numberInStock -= itemsSold:

}

else{
this.product.state = new NormalStockState (this);
this.product.state.sell (itemsSold) ;

¥

public void restock(int itemsRestocksd){
this.numberInStock += itemsRestocked;
this.product.state = new NormalStockState (this);

ate Pattern

Implementation 6/6

m Demol!

State Pattern 15 / 18

Consequences 1/2

m localizes state-specific behavior and partitions behavior for
different states
- behavior associated with state in 1 object
- easy addition of new states and transitions (define new

subclass)
- avoids large conditional or case statements

. easier code maintenance, modification and extension
. code more explicit

- but increases number of classes, less compact

State Pattern 16 / 18

Consequences 2/2

m makes state transitions explicit
- if state is only defined by internal data values, there's no

explicit representation of the transitions
- state objects can protect Context from inconsistent internal

states
. state transitions atomic (from Context's perspective)
. rebinding only one variable (Context's state object)
m state objects can be shared (by contexts)

- no instance variables
- state represented by their type

State Pattern 17 / 18

Resources

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides John: Design Patterns,
Addison-Wesley Publishing Company, 1995.

Lasater, Christopher G.: Design Patterns, Wordware Publishing, 2007.

State Pattern 18 / 18

