
State Pattern

Nadine Dulisch



images/logo-yorku

Contents

What is the State Pattern?

Motivation (example)

Structure

Context

Implementation (example, with demo)

Consequences

State Pattern 2 / 18



images/logo-yorku

What is the State Pattern? 1/2

comparison: finite state automaton

State Pattern 3 / 18



images/logo-yorku

What is the State Pattern? 2/2

way to allow an object to alter its behavior and functionality
depending on its internal values

state changes according to the values

states represented by objects

State Pattern 4 / 18



images/logo-yorku

Motivation (example) 1/2

State Pattern 5 / 18



images/logo-yorku

Motivation (example) 2/2

Problem:

we want the object to respond differently to requests according
to its current state
we have to determine if we are low on product or if we have
enough, when changes are made to the object
to determine the state of the object, we have to perform
calculations outside of it
with large and numerous conditional statements, code can
become complex and confusing

Key idea:

Use a state object, that can change itself as the context object
(Product) changes to determine the context state

State Pattern 6 / 18



images/logo-yorku

Structure 1/2

State Pattern 7 / 18



images/logo-yorku

Structure 2/2

Context

- holds the State and is referenced by it
- delegates state-specific requests to the current ConcreteState

object
- may pass itself to the State object (to give it access to the

context)
- used by clients

State

- abstract superclass for individual states
- defines interface common to all concrete state classes

ConcreteState

- subclass for an individual state
- implements behavior associated with the state it represents

⇒ either Context or ConcreteState subclasses decide about the
transition between states

State Pattern 8 / 18



images/logo-yorku

Context

an object’s behavior depends on its state (and changes it at
runtime)

objects have large, mulitpart conditional statements that
depend on the state

- state usually represented by constants
- several operations often contain same conditional structure

State Pattern 9 / 18



images/logo-yorku

Implementation 1/6

State Pattern 10 / 18



images/logo-yorku

Implementation 2/6

State Pattern 11 / 18



images/logo-yorku

Implementation 3/6

State Pattern 12 / 18



images/logo-yorku

Implementation 4/6

State Pattern 13 / 18



images/logo-yorku

Implementation 5/6

State Pattern 14 / 18



images/logo-yorku

Implementation 6/6

Demo!

State Pattern 15 / 18



images/logo-yorku

Consequences 1/2

localizes state-specific behavior and partitions behavior for
different states

- behavior associated with state in 1 object
- easy addition of new states and transitions (define new

subclass)
- avoids large conditional or case statements

. easier code maintenance, modification and extension

. code more explicit

- but increases number of classes, less compact

State Pattern 16 / 18



images/logo-yorku

Consequences 2/2

makes state transitions explicit

- if state is only defined by internal data values, there’s no
explicit representation of the transitions

- state objects can protect Context from inconsistent internal
states

. state transitions atomic (from Context’s perspective)

. rebinding only one variable (Context’s state object)

state objects can be shared (by contexts)

- no instance variables
- state represented by their type

State Pattern 17 / 18



images/logo-yorku

Resources

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides John: Design Patterns,
Addison-Wesley Publishing Company, 1995.

Lasater, Christopher G.: Design Patterns, Wordware Publishing, 2007.

State Pattern 18 / 18


