Program Analysis

Program Analysis

« Extracting information, in order to present
abstractions of, or answer questions about, a
software system

Extracting static and dynamic information from a software system

« Static Analysis: Examines the source code

« Dynamic Analysis: Examines the system as it is
executing

Static Analysis CppETS

« Involves parsing the source code

« CppETS is a benchmark for C++ extractors
« Usually creates an Abstract Syntax Tree

« It consists of a collection of C++ programs that
pose various problems commonly found in parsing
and reverse engineering

« Borrows heavily from compiler technology but
stops before code generation

. lRequires a grammar for the programming . Static analysis research tools typically get about
anguage

60% of the problems right
« Can be very difficult to get right

Example program Example Q&A

#include <iostream.h>

class Hello {

public: Hello(); ~Hello();

i

Hello::Hello ()

{ cout << "Hello, world.\n"; }

« How many member methods are in the Hello
class?
Two, the constructor Hello: :Hello () and
destructor Hello: : ~Hello ()

Hello: :~Hello () « Where are these member methods used?

{ cout << "Goodbye, cruel world.\n"; } The constructor is called implicitly when an

main () { instance of the class is created. The destructor is
Hello h; called implicitly when the execution leaves the

return 0; scope of the instance.

Static analysis pipeline Dynamic Analysis

Fact
Source code > Raw fact base
L/_ extractor « Provides information about the run-time behaviour

of software systems, e.g.
e Component interactions
o Event traces

Fact manipulator « Concurrent behaviour

e Code coverage

4

Clustering Algorithm

e Memory management

Visualizer A

Refined fact base « Can be done with a profiler or a debugger

Design Pattern
Detection Tool

Instrumentation Instrumentation process

Source code Annotator » Annotated program
« Augments the subject program with code that - ——
transmits events to a monitoring application, or _/[/—
writes relevant information to an output file A”gg:fgtion
« A profiler can be used to examine the output file Compiler
and extract relevant facts from it

« Instrumentation affects the execution speed and

storage space requirements of the system Instrumented
Executable

Y
Dynamic analysis pipeline Non-instrumented approach

Instrumented . o
Executable > CPU Dynamic Analysis Data
— « One can also use debugger log files to obtain

dynamic information

4

AJ

Profiler « Disadvantage: Limited amount of information
Clustering Algorithm provided
Visuali , - Advantage: Less intrusive approach, more
e accurate performance measurements
Design Pattern Fact base
Detection Tool

Dynamic analysis issues Static vs. Dynamic

- Reasons over all « Observes a small
« Ensuring good code coverage is a key concern possible number of
« A comprehensive test suite is required to ensure behawolurs | beha\(;gurs i
that all paths in the code will be exercised (general results) (specific results)
« Results may not generalize to future executions » Conservative - Precise and fast
« Challenge: « Challenge: Select
Choose good representative test

abstractions cases

