Design Patterns can be simple

« Highlighting a shape in a GUI application

)) « Possible solution: Each class, such as car,
Introduction to Design Patterns House implements a method called highlight
Three examples)
- Problem: Inconsistent

° 1ol x|
Solution: In class Shape: E@W
public void highlight (
translate(1,1); é E==
draw () ;
translate(1l,1); = 6
draw () ;
translate (-2,-2);

Template Method Template Method Context

AbstractClass

{abstract}
_____ 1Calls primitiveOpl(),
| e primitiveOp2() « An algorithm is applicable for multiple types
templateMethod() -~
primitiveOp1() =---]_.__ . . L
ialbsietite S o « The algorithm can be broken down into primitive

T :?]E:E;‘;; \ operations that may be different for each type

« The order of the primitive operations does not
depend on the type

ConcreteClass

primitiveOp1()
primitiveOp2()

Template Method Solution Observer Pattern

. Define an abstract superclass with a method for + Intent: Define a one-to-many dependency
the algorithm and abstract methods for the between objects so that when one object changes
primitive operations state, all its dependents are notified and updated

. o . _ automatically
« Algorithm calls primitive operations in right order

« Motivation : Maintain consistency between
related objects while avoiding tight coupling
between their classes

« Each subclass implements primitive operations
but not the algorithm

Observer Class Diagram Observer - Participants

« Subject

e Knows its observers

y observers Observer e Provides interface for attaching, detaching and notifying its
Attach{Observer) Updatel) observers
Detach(Observer) R o
OO coone e |--| 7 lLe e ctrerrs A « Observer o
4 i o Defines an updating interface for observers
i Observer .
subjec : = « Concrete subject
C ject feg Update() = Db:mggﬁiraegsmen
prm—— =] pE—— Stores state of interest to concrete observers
57 ¢ Notifies observers when state changes
subjectState

« Concrete observer
o Maintains a reference to its concrete subject
e Stores state that corresponds to the state of the subject
¢ Implements Observer updating interface

Observer Sequence Diagram Observer - Consequences

|s_ub:£| |M| | Observer2 | « Abstract coupling between subject and observer
' : ' o Permits changing number of observers dynamically

| .

-
-

|
| set_statel |

) | | « Supports broadcast communication
notify 1 1

: | - Can have observers depend upon more than one
updat e - ! : SubJeCt
I
get _state : « Need additional protocol to indicate what changed

I

update

A\

o Not all observers participate in all changes

get _stat

A
JT

- Dangling references when subject is deleted
¢ Notify observers when subject is deleted

Decorator Pattern Decorator Class Diagram

Component
Operation()
- Intent: Attach additional responsibilities to an
object dynamically
o Provide a flexible alternative to subclassing for extending
functionality ConcreteComponent Decorator
« Motivation: Want to add responsibility to individual Operation Operationd)

objects not to entire classes f ‘f

o Add properties like border, scrolling, etc to any user interface ‘
component as needed

ConcreteDecoratorA ConcreteDecoratorB
addedState
r Operaton()
Operation
P 0 AddedBehaviour()

Decorator Participants Decorator Object Diagram

« Component: defines the interface for objects that
can have responsibilities added to them

dynamically
« Concrete component: Defines an object to which (aBorderbecorator)
HH H*"HHN | component @ (aS:rollDecuramr \ '/aTaxtWew j
additional responsibilities can be attached e 2 component_e—} !)

R

« Decorator: Maintains a reference to a component
object and defines an interface that conforms to
Component

« Concrete decorator: Adds responsibilities to the
component

Decorator - Applicability Decorator - Benefits

« Add responsibilities to individual objects » More flexibility than static inheritance

dynamically and transparently e Can add and remove responsibilities dynamically
o Without affecting other objects e Can handle combinatorial explosion of possibilities
« For responsibilities that can be withdrawn . ﬁ,voids ;‘]eature laden classes high up in the
lerarcny

« When subclass extension is impractical , o
e Pay as you go when adding responsibilities

e Avoi mbinatorial explosion of possible extensions
oid combinatorial explo P e Can support unforeseen features

e Class definition may be hidden or otherwise unavailable for

. o Decorators are independent of the classes they decorate
subclassing

¢ Functionality is composed in simple pieces

Decorator - Liabilities

« From object identity point of view, a decorated
component is not identical

o Decorator acts as a transparent enclosure

e Cannot rely on object identity when using decorators

« Lots of little objects

e Often result in systems composed of many look alike objects

» Differ in the way they are interconnected, not in class or value of
variables

e Can be difficult to learn and debug

