
Design Patterns

Vasileios Theodorou
1

  A partitioning structural design pattern

  Motivation
-  Treat individual objects and compositions of objects uniformly

  Application
-  Objects are recursively composed
-  Composite objects are treated as a collection of particular, discrete

objects
-  Objects are composed into tree structures that represent whole-part

hierarchies
-  No discrimination between manipulating simple or composite objects

(composite objects can take part in compositions with other objects)
-  Multiple different compositions of Objects: Components may keep track

of multiple parents – determine proper parent every time according to
context

2

3

  There is a tree/nested structure where objects have at least one
common explicit or implicit behavior (e.g. a common method)

  This behavior can be elicited as a part-whole relationship based
on the structure

  Objects can dynamically be added to/removed from the structure

  Multi-level analysis on complex Objects

  Specific Uses
o  File System implementation
o  Graphics Editors
o  Dynamic on-line application sessions (build your own pc/car/…)
o  ...

4

5

6

import java.util.List;
import java.util.ArrayList;

/** "Component" */
interface Equipment {
 public Watt power();
 public Currency netPrice();
 public Currency discountPrice();
}

/** "Composite" */
class CompositeEquipment implements
Equipment {
 private Currency netPrice;
 //Collection of child equipments.
 private List<Equipment> mChildEquipments =
new ArrayList<Equipment>();
 public Currency netPrice() {
 Currency netPrice = this.netPrice;
 for (Equipment equipment :
mChildEquipments) {
 netPrice += equipment.netPrice();
 }
 return(netPrice);
 }
 public Watt power() {
 …
 }
 public Currency discountPrice() {
 …
 }

 //Adds the equipment to the composition.
 public void add(Equipment equipment) {
 mChildEquipments.add(equipment);
 }
 //Removes the equipment from the
composition.
 public void remove(Equipment equipment) {
 mChildEquipments.remove(equipment);
 }
}

/** "Composite" Components */
class Bus extends CompositeEquipment {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …
 }
class Cabinet extends CompositeEquipment {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …
 }
class Chassis extends CompositeEquipment {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …
 }

7

/** "Leaf" Components */
class Card implements Equipment {
 private Currency netPrice;
 public Currency netPrice() {
 return(this.netPrice);}
 public Watt power() {
 …
 }
 public Currency discountPrice() {
 …
 }
}

class FloppyDisk implements Equipment {
 private Currency netPrice;
 public Currency netPrice() {
 return(this.netPrice);}
 public Watt power() {
 …
 }
 public Currency discountPrice() {
 …
 }
}

 /** Client Code */
public class Program {

 public static void main(String[] args) {
 Cabinet pcCabinet = new Cabinet();
 Chassis pcChassis = new Chassis();
 pcCabinet.add(pcChassis);
 Bus mcaBus = new Bus();
 Card card = new Card();
 mcaBus.add(card);
 pcChassis.add(mcaBus);
 FloppyDisc floppyD = new FloppyDisc();
 pcChassis.add(floppyD);

System.out.println(“%f” , pcChassis.netPrice.value);
 }
}

  Consequences
+ Uniformity: All objects in a composite construction are treated

the same way
+ Scalability: We can (dynamically, during run-time) create new

compositions from existing objects
+ We can analyse a construction at whichever level desired, each

component can be seen as a construction itself

-  Operating Cost: We might require many other objects for the
creation of a composite object

  Inappropriate when:
o  Memory unavailable or performance is the key objective
o  Objects are heterogeneous or non-hierarchical

  Alternative approaches: structure represented virtually, collection
of objects

8

-  Do components know their parents?

-  Can we add components which are already part of the
structure?

-  Same interface for Simple and Composite objects?

-  How can an object be identified as a leaf or composite? Use a
Boolean? Hard-coded?

-  Actual object or reference for the representation of each
object composing the Composite object?

-  Which object is responsible for the deletion of composing
objects? At which point?

9

  Decorator
o  Different purpose : dynamically add functionality & clients of class don’t need to

know X build a hierarchical structure so that the entire structure is viewed as a
single entity

o  Similar implementation : Object embedded within another but one instance of a
Decorator can only “decorate” one object at a time, not a collection

o  Decorators can be used to decorate different components that all share the same
interface

  Chain of responsibility
o  Both can call each of their contained objects in turn
o  Chain of responsibility : No discrimination between complex and individual

objects

  Visitor & Flyweight
o  Collections of objects
o  Passed-in objects influence the overall behavior
o  Visitors can be used to traverse different objects of the Composite Structure

  Iterator
o  Usually use one or many of the collection properties of this pattern

10

11

