Composite Pattern

Design Patterns

Composite Pattern

v

A partitioning structural design pattern

Motivation
Treat individual objects and compositions of objects uniformly

Application
Objects are recursively composed

Composite objects are treated as a collection of particular, discrete
objects

Objects are composed into tree structures that represent whole-part
hierarchies

No discrimination between manipulating simple or composite objects
(composite objects can take part in compositions with other objects)
Multiple different compositions of Objects: Components may keep track

of multiple parents - determine proper parent every time according to
context

Composite Pattern-Class Diagram

Component

+operation()

+add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

/\

-children

Leaf Composite

+operation() +operation() -‘é
+add(inc: Corﬁpeslte) 1

+remove(in ¢ : Compasite)]
+getChild(in i : int) >~

~

{ forall g in children
g.operation(); }

Composite Pattern-Use

» There is a tree/nested structure where objects have at least one
common explicit or implicit behavior (e.g. a common method)

» This behavior can be elicited as a part-whole relationship based
on the structure

» Objects can dynamically be added to/removed from the structure
» Multi-level analysis on complex Objects

+ Specific Uses
o File System implementation
o Graphics Editors
o Dynamic on-line application sessions (build your own pc/car/...)
O

Composite Pattern- Example

Equipment

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

void Add{Equipment)
void Remove{Equipment)

lterator<Equipment> getlterator()

|

_equipment

Card

FloppyDisk

CompositeEquipment

O

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()

Currency NetPrice() o-------------

Currency DiscountPrice()

void Add(Equipment)
void Remove(Equipment)

lterator<Equipment> getlterator()

4---4 forall g in children

add += g.NetPrice(),

A

Bus

Cabinet

Chassis

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Watt Power()
Currency NetPrice()
Currency DiscountPrice()

Composite Pattern-Example Code (1)

import java.util.List;
import java.util.ArrayList;
//Adds the equipment to the composition.
/** "Component” */ public void add(Equipment equipment) {
interface Equipment { mChildEquipments.add(equipment);

public Watt power(); }

public Currency netPrice(); .

public Currency discountPrice(); //Bemoves the equipment from the
} composition.

public void remove (Equipment equipment) {

/** "Composite" */ mChildEquipments.remove (equipment) ;
class CompositeEquipment implements }
Equipment { }

private Currency netPrice;

//Collection of child equipments. /** "Composite" Components */

private List<Equipment> mChildEquipments =
new ArrayList<Equipment>();
public Currency netPrice() {
Currency netPrice = this.netPrice;
for (Equipment equipment :
mChildEquipments) {
netPrice += equipment.netPrice(); }
} class Chassis extends CompositeEquipment ({
return(netPrice);
} }
public Watt power() {

}

public Currency discountPrice() {

class Bus extends CompositeEquipment {

}

class Cabinet extends CompositeEquipment ({

-

Composite Pattern-Example Code (2)

/** "Leaf" Components */
class Card implements Equipment {
private Currency netPrice;
public Currency netPrice() {
return (this.netPrice);}
public Watt power () {

/** Client Code */
public class Program {

public static void main(String[] args) {
Cabinet pcCabinet = new Cabinet();
Chassis pcChassis = new Chassis();
pcCabinet.add(pcChassis);
Bus mcaBus = new Bus();
Card card = new Card();
mcaBus.add(card);
pcChassis.add(mcaBus);
FloppyDisc floppyD = new FloppyDisc();
pcChassis.add(floppyD);

}

public Currency discountPrice() {

}
}

class FloppyDisk implements Equipment {
private Currency netPrice;
public Currency netPrice() {
return(this.netPrice);}
public Watt power() { }

}..

public Currency discountPrice() {

System.out.println(“%f” , pcChassis.netPrice.value);

}

}...

Composite Pattern-Pros & Cons

» Consequences

+ Uniformity: All objects in a composite construction are treated
the same way

+ Scalability: We can (dynamically, during run-time) create new
compositions from existing objects

+ We can analyse a construction at whichever level desired, each
component can be seen as a construction itself

- Operating Cost: We might require many other objects for the
creation of a composite object

« Inappropriate when:
- Memory unavailable or performance is the key objective
- Objects are heterogeneous or non-hierarchical

~ Alternative approaches: structure represented virtually, collection
of objects

Composite Pattern-Implementation
Comments

Do components know their parents?

Can we add components which are already part of the
structure?

Same interface for Simple and Composite objects?

How can an object be identified as a leaf or composite? Use a
Boolean? Hard-coded?

Actual object or reference for the representation of each
object composing the Composite object?

Which object is responsible for the deletion of composing
objects? At which point?

Compared to Other Patterns

Decorator

o Different purpose : dynamically add functionality & clients of class don’t need to
know X build a hierarchical structure so that the entire structure is viewed as a
single entity

o Similar implementation : Object embedded within another but one instance of a
Decorator can only “decorate” one object at a time, not a collection

o Decorators can be used to decorate different components that all share the same
interface

v

v

Chain of responsibility

o Both can call each of their contained objects in turn

o Clgl_ain of responsibility : No discrimination between complex and individual
objects

v

Visitor & Flyweight

o Collections of objects

o Passed-in objects influence the overall behavior

o Visitors can be used to traverse different objects of the Composite Structure

Iterator
o Usually use one or many of the collection properties of this pattern

v

10

Composite Pattern-Questions?

