
Evaluating Software Clustering
What is a good software decomposition?



The problem

• How do we know that a particular decomposition
of a software system is good?

• What does “good” mean anyway?

• We can compare against a
• Mental model

• Benchmark standard

• Can be done either manually or automatically



Manual evaluation

• Have experts evaluate automatic decompositions

• Very time-consuming, impractical

• Also quite subjective

• Need an automatic, objective way of doing it



Automatic evaluation

• Usually measures the similarity of an automatic
decomposition A to an authoritative
decomposition B (prepared manually)

• Major drawback: Assumes there exists one
“correct” decomposition

• Other evaluation approaches are possible, such
as measuring the stability or the extremity
distribution of a clustering algorithm



Precision/Recall

• Standard Information Retrieval measures

• Were applied in a software clustering context by
Anquetil

• Definitions:
• Intra pair: A pair of software entities in the same cluster

• Inter pair: A pair of entities in different clusters



Precision/Recall

• Precision: Percentage of intra pairs in A which are
also intra in B

• Recall: Percentage of intra pairs in B also found in
A

• A good algorithm should exhibit high values in
both measures



Precision / Recall example
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Pair 1-5: Intra pair in A but not in B
Precision: 16/20 = 80% Recall: 16/21 = 76.2%



Problems with Precision / Recall

• Sensitive to the size and number of clusters
• Differences are exaggerated if you have small/many clusters

• Two values makes comparison harder

• The two values are interchangeable if there is no
authoritative decomposition



Koschke - Eisenbarth measure (KE)

• Loosely based on Precision/Recall

• Attempts to be less strict

• Definitions:
• GOOD match: Two clusters (one in A, one in B) with both precision

and recall larger than a threshold p (typical value 70%)

• OK match: Two clusters with only one of the measures larger than p



Koschke - Eisenbarth metric
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Koschke - Eisenbarth metric

• Does not take edges into account

• In extreme situations (each cluster contains only
one element) may provide strange results
(similarity of 100%)

• No penalty for joining clusters



Assignment tool: ke

• Takes two .kos files containing different
decompositions of the same set of entities

• Example:
ke -cand dec1.kos -ref dec2.kos

• Produces lots of output. We’re interested in the
recall rate

• Transform an RSF file with contain facts to the KE
format with
unitrans input.rsf output.kos



MoJo distance

• The distance between two different partitions of
the same software system is defined as the
minimum number of Move and Join operations to
transform one to the other

• Move: Remove an object from a cluster and put it in a different
cluster

• Join: Merge two clusters into one

• Split: Has to be simulated by Move operations



MoJo example
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MoJo(A,B) = 2
MoJo(B,A) = 3



Why only Move and Join?

• Two clusters can be joined in only one way. One
cluster can be split in two in an exponential
number of ways

• Joining two clusters only means that we
performed more detailed clustering than required

• Splitting is effectively assigned a weight equal to
the cardinality of the smaller of the two resulting
clusters



Computing MoJo distance

• MoJo distance can be computed in polynomial
time

• Worst case complexity is O(n3) but with real data
it is no worse than O(nlogn)



Assignment tool: mojo

• Takes two .rsf files containing different
decompositions of the same set of entities

• Example: mojo dec1.rsf dec2.rsf

• Output: 383

• If the two decompositions do not refer to the same
set of entities, only the intersection of the two sets
is considered.



MoJoFM Effectiveness Metric

MoJoFM(A) = (1− MoJo(A, B)

max∀c(MoJo(C, B))
)× 100%

• The denominator is the maximum possible MoJo
distance to decomposition B

• Can be computed by construction



EdgeSim

• Other measures do not consider edges

• Edges might convey important information

• EdgeSim penalizes clustering algorithms for
changing the edge types



EdgeSim
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Inter-edge: Edge between clusters
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Y: set of edges that are of the same type in both A
and B



EdgeSim example
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weight(E) x 100%

In this example, EdgeSim(A,B) = 52.6%



EdgeSim counterexample
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EdgeMoJo philosophy

• A similarity measure cannot make assumptions as
to what cluster a particular object should belong to

• Dissimilarity between decompositions should
increase if the misplacement of an object results
in the misplacement of a large number of edges



EdgeMoJo calculation

• Apply MoJo and obtain a series of Move and Join
operations

• Perform all Join operations

• The cost of each Move operations increases from
1 to

m(o) = 1 +
|(W (o, Anew)−W (o, Aold)|
W (o, Anew) + W (o, Aold)



EdgeMoJo example
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m(5) = 1 + |4−1|
4+1 = 1.6



EdgeMoJo in practice

• Experiments with real and synthetic data indicated
that EdgeMoJo distance is usually MoJo distance
multiplied by a constant factor

• The usefulness of edges in measuring similarity
between partitions is still an open question



What about nested decompositions?

• All measures we discussed so far assume a flat
decomposition

• No nested clusters

• Clustering algorithms typically create nested
decompositions

• One needs to flatten decompositions to use these
measures



Creating compact flat decompositions

• All objects are re-assigned to the first level cluster
they are transitively contained in
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Creating detailed flat decompositions

• All clusters are re-assigned to the root
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The END framework

• Each decomposition is transformed into a
sequence of decompositions

• One for each level in the containment tree

• Compute the value of a flat evaluation measure M
at each level

• Obtain a vector of values SMi



The END framework

• Compute the combined similarity/distance S as√∑
(wiSMi

2)

where
∑

wi = 1

• Weights need to be assigned to each level



A different solution: UpMoJo

• An extension of MoJo distance that includes an
Up operation as well

• Moves an object one level higher in the containment tree

• A series of Up operations ensures that the top
level of the containment tree contains the same
set of objects

• MoJo rearranges the top level

• The process repeats for each subtree of the top
level


