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Robot middleware

Provide an abstraction layer and drivers between 
computation and embodiment

Analogy: hardware abstraction layer in an operating 
system

A number of open-source frameworks

Player: client/server model (1999-2009)

ROS: peer-to-peer model (2008-date)

Player 
(playerstage.sourceforge.net)

Client-server architecture

Publish-subscript messaging

Server runs on robot

Clients (applications) access server

subscribe to robot proxies



ROS (ros.org)

Robot operating system

Created by Morgan Quigley and Willow Garage

Peer-to-peer architecture over networks

Software function modularized as ROS

Run-time system: nodes communicate over IP 

Packaging system: modes organized into 
distributable packages

ROS as a development 
ecosystem

ROS Component
ROS node: core element 

Defined in terms of messages and services

Nodes subscribe to and publish topics as a stream

Nodes are wrappers around code 

Package (node, message,services)
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Individual packages are grouped together
into stacks



ROS packaging system

Stack
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Multiple stacks become a repository

ROS packaging system

Stack

Multiple stacks become a repository

Stack

Repository

ROS operation

Key commands are 
command-line driven

Packages are specially 
constructed directories

Nodes end up written in 
Python or C++ (other 
options, but not as 
common)



ROS tutorials

Many online ones.

Just to be different, lets do one differently

Want to create a package to deal with the superscouts

Could do this in lots of ways

Build on the robot, then do all control in ROS

Build a wrapper for the current software <- do this 
here

Superscouts

Run a reactive control architecture

Robot has 

a pose (x,y,theta)

a local goal (x,y,theta)

Continually tries to maintain the goal while avoiding 
obstacles

Uses a reactive control architecture to do this

So lets build a package..

(1) Need to define a package to hold things

roscreate-pkg superscout std_msg rospy roscpp

Creates a package called superscout 

Defines standard messages, and provides building 
structures for Python and C++

rosmake superscout

Builds the package (almost nothing at this point)

Defining messages

Are defined in msg subdirectory of package

Text file .msg

Lines define fields in a message

float 32 x
float32 y
float32 theta

Pose.msg

Makefile
#rosbuild_genmsg()

Will define a type 
Pose() 



Defining a service

Defines a protocol between nodes

Defined in terms of messages (can be unidirectional)

Defined in a text file .srv in a directory ‘srv’

# get pose
---
Pose state

GetPose.srv

Post state
---

SetPose.srv

Makefile
#rosbuild_gensrv()

Now the magic

ROS will deal with serialization, etc. It will define types 
based on the msg files and defines the node-node 
protocols based on the srv files

Your job is to write the code to do this.

Examples here in Python

rospy.init_node(‘node-name’) 
- create node

rospy.spin()
       - sleep
rospy.Service(‘service’,serviceName, handler) 

- define the service<->handler linkage
- serviceName is defined by .srv file
- service is the ‘name’ the service will be defined
   as

A sample from the ROS tutorials

Defined in .srv file



A sample from the ROS tutorials

Type defined in .msg file

A sample from the ROS tutorials

Servicing being provided

Requesting a service

my_package/src/Foo.srv ->

my_package.srv.Foo

my_package.srv.FooRequest

my_package.srv.FooResponse

rospy.ServiceProxy(‘service_name’, my_package.srv.Foo)
Wait for this service



Link to this


