
Robot middleware (ROS)

Robot control loop

Decision
Making

Motion
Control Physics

SensingPerception

objective

Robot middleware

Provide an abstraction layer and drivers between
computation and embodiment

Analogy: hardware abstraction layer in an operating
system

A number of open-source frameworks

Player: client/server model (1999-2009)

ROS: peer-to-peer model (2008-date)

Player
(playerstage.sourceforge.net)

Client-server architecture

Publish-subscript messaging

Server runs on robot

Clients (applications) access server

subscribe to robot proxies

ROS (ros.org)

Robot operating system

Created by Morgan Quigley and Willow Garage

Peer-to-peer architecture over networks

Software function modularized as ROS

Run-time system: nodes communicate over IP

Packaging system: modes organized into
distributable packages

ROS as a development
ecosystem

ROS Component
ROS node: core element

Defined in terms of messages and services

Nodes subscribe to and publish topics as a stream

Nodes are wrappers around code

Package (node, message,services)

Package
Nodes

Messages
Services

ROS packaging system

Package
Nodes

Messages
Services

Package
Nodes

Messages
Services

Individual packages are grouped together
into stacks

ROS packaging system

Stack

Package
Nodes

Messages
Services

Package
Nodes

Messages
Services

Multiple stacks become a repository

ROS packaging system

Stack

Multiple stacks become a repository

Stack

Repository

ROS operation

Key commands are
command-line driven

Packages are specially
constructed directories

Nodes end up written in
Python or C++ (other
options, but not as
common)

ROS tutorials

Many online ones.

Just to be different, lets do one differently

Want to create a package to deal with the superscouts

Could do this in lots of ways

Build on the robot, then do all control in ROS

Build a wrapper for the current software <- do this
here

Superscouts

Run a reactive control architecture

Robot has

a pose (x,y,theta)

a local goal (x,y,theta)

Continually tries to maintain the goal while avoiding
obstacles

Uses a reactive control architecture to do this

So lets build a package..

(1) Need to define a package to hold things

roscreate-pkg superscout std_msg rospy roscpp

Creates a package called superscout

Defines standard messages, and provides building
structures for Python and C++

rosmake superscout

Builds the package (almost nothing at this point)

Defining messages

Are defined in msg subdirectory of package

Text file .msg

Lines define fields in a message

float 32 x
float32 y
float32 theta

Pose.msg

Makefile
#rosbuild_genmsg()

Will define a type
Pose()

Defining a service

Defines a protocol between nodes

Defined in terms of messages (can be unidirectional)

Defined in a text file .srv in a directory ‘srv’

get pose

Pose state

GetPose.srv

Post state

SetPose.srv

Makefile
#rosbuild_gensrv()

Now the magic

ROS will deal with serialization, etc. It will define types
based on the msg files and defines the node-node
protocols based on the srv files

Your job is to write the code to do this.

Examples here in Python

rospy.init_node(‘node-name’)
- create node

rospy.spin()
 - sleep
rospy.Service(‘service’,serviceName, handler)

- define the service<->handler linkage
- serviceName is defined by .srv file
- service is the ‘name’ the service will be defined
 as

A sample from the ROS tutorials

Defined in .srv file

A sample from the ROS tutorials

Type defined in .msg file

A sample from the ROS tutorials

Servicing being provided

Requesting a service

my_package/src/Foo.srv ->

my_package.srv.Foo

my_package.srv.FooRequest

my_package.srv.FooResponse

rospy.ServiceProxy(‘service_name’, my_package.srv.Foo)
Wait for this service

Link to this

