CSE 6324 From control to actuators

Michael Jenkin jenkin@cse.yorku.ca Office Hours: Sherman 1028 Wed 3-4

Tuesday, 13 September, 11

Evaluation

- Two parts.
 - Part I building the robot.
 - Part II experiments with the robot.
- Likely 2-3 groups for part I.
 - Constrained by hardware resources
- Part II probably more groups

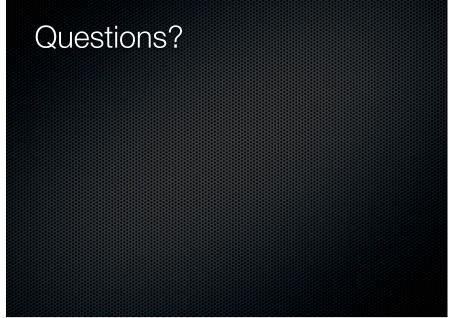
This is a robot building course

- You will build your very own(*) robot
- Expect to spend significant time in the lab, working on robotic systems
- Expect to spend significant time dealing with the realities of getting your machine to work

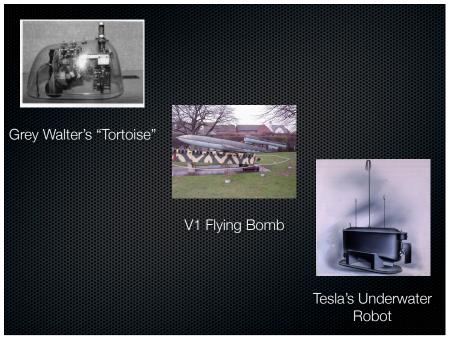
Tuesday, 13 September, 11

Evaluation

- Expect (as a class) to write a CRV-format paper describing the hardware design (part I)
- Expect to write a CRV-format paper describing your approach in part II
 - Both will be submitted to a conference. (Take this as a practice in writing an academic paper)


Tuesday, 13 September, 11

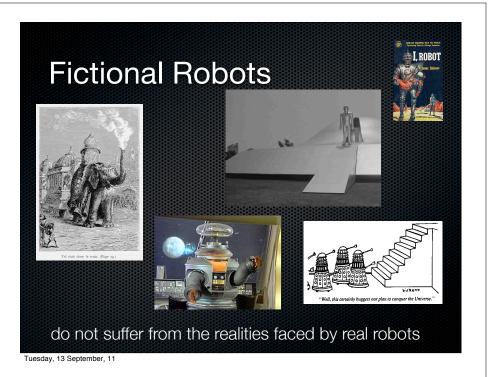
Meetings


- Nominally M/W as advertised
- No class the week of the 19th (I am in Germany)
- We will move to the lab and test areas quickly I hope.

Tuesday, 13 September, 11

There have been robotic systems since the 1940's..

Tuesday, 13 September, 11

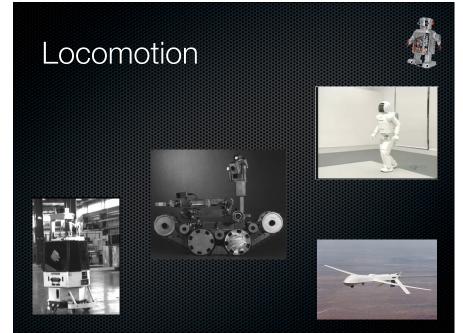

What is an autonomous robot?

"The Encyclopedia Galactica defines a robot as a mechanical apparatus designed to do the work of a man. The marketing division of the Sirius Cybernetics Corporation defines a robot as "Your Plastic Pal Who's Fun to Be With"

- Douglas Adams

Tuesday, 13 September, 11

Mobility is key



- An effective autonomous system must be able to
 - Move about space
 - Sense its space
 - Reason about space
- Tasks distributed in space define the problems associated with mobile robots.

Tuesday, 13 September, 11

Real Robots: the Problems

- Locomotion
 - How to make a robot move
- Sensing
 - How to enable a robot measures properties of its environment
- Reasoning
 - How to enable a robot to transduce its measurements into actions

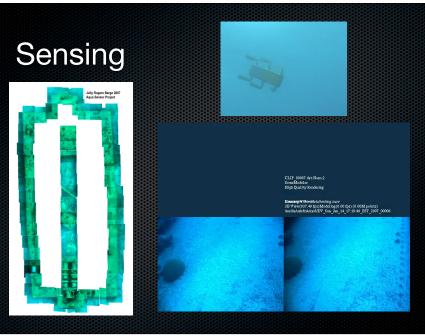
Tuesday, 13 September, 11

Locomotion

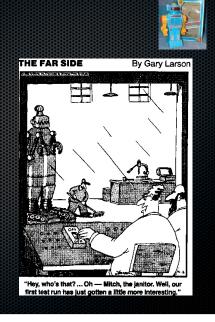
 Wheels work well for structured environments but more complex environments require alternative solutions.

C1995 MITE Leg Lab-

Tuesday, 13 September, 11


Sensing

- Vision, sonar, radar, laser imaging...
- Fundamental problem is that it is very difficult to understand the data.


Collecting the data may be 'easy', but understanding it can be extremely difficult

Tuesday, 13 September, 11

Reasoning

- Critical issues
 - Situational reasoning
 - Reactivity
 - Reasoning about space
 - Sensor processing

Tuesday, 13 September, 11

We are going to build an aquatic vehicle

- Unmanned surface vehicle
 - Based on an RC boat platform
 - Using Beagleboard for onboard computation
 - Arduino for signal conditioning
 - Off-board communication via 802.11 networking

Tuesday, 13 September, 11

