
York University CSE 6117 November 29, 2011

Homework Exercise #8
Due: December 6, 2011

8. Consider an asynchronous shared-memory system with halting failures. In class we proved
that the following algorithm solves 2-process consensus using a stack Stack that initially
contains one element “winner” and two registers R[1] and R[2] that each initially contain ⊥.

1 Consensus(v) . Code for process i (i ∈ {1, 2})
2 R[i]← v . Write your input to your register
3 if Stack.pop() =“winner” then result← R[i] . Choose your own input value
4 else result← R[3− i] . Choose other process’s input value
5 output result
6 end Consensus

This algorithm uses a stack that is initially non-empty. We want to show it is possible to
solve consensus using stacks that are initially empty (plus registers). Prove that the following
algorithm correctly solves consensus for two processes. It uses two stacks Stack1 and Stack2

(initially empty), a single-writer snapshot object Snap (whose components are initially ⊥)
and four registers Ri[j] where i, j ∈ {1, 2} (all initially ⊥).

1 Consensus(v) . Code for process i (i ∈ {1, 2})
2 pref ← v
3 Stacki.push(“winner”) . Initialize your stack
4 Snap.update(i, “ready”) . Announce your stack is ready
5 ~v ← Snap.scan() . Find out which stacks are ready
6 for j ← 1..2
7 if ~v[j] =“ready” then
8 Rj[i]← pref . These 3 lines similar to alg above
9 if Stackj.pop() =“winner” then pref ← Rj[i]
10 else pref ← Rj[3− i]
11 end if
12 end for
13 output pref
14 end Consensus

Here’s the intuitive description of what the algorithm does. There are really two copies
of the basic consensus algorithm embedded in it. One copy uses Stack1, R1[1] and R1[2].
The other copy uses Stack2, R2[1] and R2[2]. Each process participates in one copy or both
copies (depending on which stacks are ready to use when the process performs its scan). If
a process participates in both copies, it uses the output from the first copy as its input to
the second copy.

9. Prove that a system with stacks and registers can solve asynchronous consensus among n
processes if we know there will be at most one process that has a halting failure. Your
algorithm should be very simple.

1


