
CSE 6117 September 13, 2011

Notes on Dijkstra’s Algorithm

These are some notes on Dijkstra’s mutual exclusion algorithm (CACM 8(9), Sept 1965,
p. 569).

Below, I give Dijkstra’s mutual exclusion algorithm using more modern notation. (The
Interested array is the negation of Dijkstra’s b array and the Passed array is the negation
of Dijkstra’s c array.) N is the number of processes in the system. The shared registers
Passed[i] and Interested[i] can be written by process i and read by every process. The
shared register K can be read and written by every process, and stores an integer value,
where 1 ≤ K ≤ N (initially arbitrary). All boolean variables are initially false.

Shared variables:
Interested[1..N ] % Boolean entries indicate which processes are interested in using the resource
Passed[1..N ] % Boolean entries indicate which processes have passed Phase 1
K % integer is the name of a process allowed to try for the resource next

Local variable:
done % Boolean variable that is used to determine when the process can exit the outer loop
Code for process i:
Interested[i]← true
loop

loop % Entry Phase 1
exit when K = i
if not Interested[K] then % try to go next

K ← i
end loop
Passed[i]← true % begin Entry Phase 2
done← true
for j ← 1..N except i % check if anyone else has passed Phase 1

if Passed[j] then % go back to Phase 1
Passed[i]← false
done← false

end for
exit when done

end loop
CRITICAL SECTION
Passed[i]← false
Interested[i]← false
REMAINDER SECTION

We now sketch the proof of correctness of the algorithm.
Exclusion property: No two processes are ever in the critical section simultaneously.

The argument for this property is based entirely on the Passed array. (It has nothing to do

1 cont’d. . .



CSE 6117 Notes on Dijkstra’s Algorithm September 13, 2011

with the Interested array or K.) To derive a contradiction, suppose two agents i and j are
in the critical section simultaneously. Then, consider the last time each of them set its entry
of Passed to true prior to entering the critical section. Without loss of generality, suppose i
did this after j did. Then, when i reads Passed[j] during Phase 2, it will see that Passed[j]
is true, and it will go back to Phase 1. This contradicts the fact that i gets into the critical
section.

Progress property: If anybody wants to enter the critical section, eventually somebody
does. Suppose some processes are trying to get to the critical section (i.e., in the big loop)
and no process is in the critical section. We must show that some process eventually enters
the critical section. Eventually K will get set to the name of one of the processes that is
trying to enter the critical section. The value of K may change a few times (for example
if several processes are about to write their own ids into K) but, eventually, K will stop
changing until some progress is made because Interested[K] will be true. Once K has settled
down to a particular value, that process must just wait until all other processes get kicked
out of phase 2. Those processes won’t be able to re-enter phase 2. So the process whose id
is in K will eventually get into the critical section.

Notice that this algorithm allows starvation: one process may be left out of the critical
section forever while another enters it infinitely many times.

2


