
1

10/2/2011 1:15 PM 1

Chapter 6 ─ Digital Data

Communication Techniques

CSE 3213

Fall 2011

2

Asynchronous and Synchronous

Transmission

• Receiver samples the medium at the center of
each bit time.

• Transmitter’s and receiver’s clocks may not be
precisely aligned.

• Example (discussed in class)

2

Asynchronous and Synchronous

Transmission (2)

• timing problems require a mechanism to
synchronize the transmitter and receiver
—receiver samples stream at bit intervals

—if clocks are not precisely aligned, drifting will sample
at wrong time after sufficient bits are sent

• two solutions to synchronizing clocks:

Asynchronous Transmission

� data are transmitted one character at a time

�each character is 5 to 8 bits in length

� receiver has the opportunity to resynchronize at the
beginning of each new character

• simple and cheap

� requires overhead of 2 or 3 bits per character (~20%)

• the larger the block of bits, the greater the
cumulative timing error

• good for data with large gaps (keyboard)

3

Asynchronous Transmission

6

Asynchronous Trx Behavior

• Idle state = binary 1

• In idle state, receiver looks for transition from 1 to 0

• Start bit = binary 0

• Then samples next 5 – 8 intervals (character length)

• Stop element = binary 1 (min length = 1, 1.5 or 2 bits)

No maximum length specified for stop element (why?)

• Then looks for next 1 to 0 for next char

4

7

Synchronous Trx - Bit Level

• Block of data transmitted without start or stop
bits

• Clocks must be synchronized

• Can use separate clock line

—Good over short distances

—Subject to impairments

• Embed clock signal in data

—Manchester encoding (digital signals)

—Carrier frequency, phase (analog signals)

8

Synchronous Trx - Block Level

• Need to indicate start and end of block

• Use preamble and postamble

—e.g. series of SYN (hex 16) characters

—e.g. block of 11111111 patterns ending in 11111110

• More efficient (lower overhead) than
asynchronous transmission

5

Types of Error

• an error occurs when a bit is altered between
transmission and reception
—binary 1 is transmitted and binary 0 is received or
binary 0 is transmitted and binary 1 is received

single bit errors

• isolated error that alters one bit but not nearby bits

• caused by white noise

burst errors

• contiguous sequence of B bits where first and last bits and any
number of intermediate bits are received in error

• caused by impulse noise or by fading in wireless

• effects greater at higher data rates

Error Detection

• regardless of design there will be errors

• can detect errors by using an error-detecting
code added by the transmitter

• code is also referred to as check bits

• recalculated and checked by receiver

• there is still chance of undetected error

6

Parity Check

• the simplest error detecting scheme is to append
a parity bit to the end of a block of data

� if any even number of bits are inverted due to
error, an undetected error occurs

Error Detection Process

7

13

Cyclic Redundancy Check (CRC)

• One of the most common and powerful error-
detecting codes.

• Given k bits of data,

generate a sequence F of j bits (FCS)

using a predetermined divisor P of (j+1) bits

• Transmit a frame of k+j bits (data + FCS) which
will be exactly divisible by divisor P

• Receiver divides frame by divisor P
—If no remainder, assume no error

14

CRC (continued)

• Simpler but equivalent method: receiver repeats
the steps the sender did.

—If getting the same FCS, assume no error.

3 equivalent procedures:

• Modulo-2 arithmetic

• Polynomials

• Digital logic (not covered)

Examples (discussed in class)

8

15

Error Correction

• Correction of detected errors usually requires
whole data block to be retransmitted (chap. 7)

• But not appropriate for wireless applications

—Bit error rate is high

• Lots of retransmissions

—Propagation delay can be long (satellite) compared
with frame transmission time

• Would result in retransmission of frame in error plus many
subsequent frames

• Need to correct errors on basis of bits received

16

How Error Correction Works

• Add redundancy to transmitted message

• Can deduce original in face of certain level of
error rate

• Example: block error correction code

—In general, add (n – k) bits to end of block
• Gives n bit block (codeword)

• All of original k bits included in codeword

—Some FEC map k bit input onto n bit codeword such
that original k bits do not appear

9

17

Error Correction Process

Diagram

18

Error Correction Process

• Each k bit block mapped to an n bit block (n>k)
—Codeword

— Forward error correction (FEC) encoder

• Codeword sent

• Received bit string similar to transmitted but may
contain errors

• Received code word passed to FEC decoder

— If no errors, original data block output

— Some error patterns can be detected and corrected

— Some error patterns can be detected but not corrected

— Some (rare) error patterns are not detected

• Results in incorrect data output from FEC

10

19

Design Considerations for Block

Code

• For given values of n and k, want the largest
possible value of dmin

• To increase dmin increase the number of extra
bits.

• Reduce the number of extra bits to reduce
bandwidth needed

• Easy to encode/decode, minimal overheads
(memory, time)

Reading

• Chapter 6, Stallings’ book

• Homework: Solve problems 6.13 and 6.15 in the
textbook.

20

