

Link State Routing

- □ designed to overcome drawbacks of distance-vector
- each router determines link cost on each interface
- advertises set of link costs to all other routers in topology
- □ if link costs change, router advertises new values
- each router constructs topology of entire configuration
 - can calculate shortest path to each dest
 - use to construct routing table with first hop to each dest
- do not use distributed routing algorithm, but any suitable alg to determine shortest paths, eg. Dijkstra's algorithm
- Open Shortest Path First (OSPF) is a link-state protocol

Destination	Next Hop	Distance
N1	R3	10
N2	R3	10
N3	R3	7
N4	R3	8
N6	R10	8
N7	R10	12
N8	R10	10
N9	R10	11
N10	R10	13
N11	R10	14
H1	R10	21
R5	R5	6
R7	R10	8
N12	R10	10
N13	R5	14
N14	R5	14
N15	R10	17

- link-state and distance-vector not effective for exterior routing protocols
- □ distance-vector
 - assumes routers share common distance metric
 - but different ASs may have different priorities & needs
 - but have no info on AS's visited along route
- link-state
 - different ASs may use different metrics and have different restrictions
 - flooding of link state information to all routers unmanageable

Border Gateway Protocol (BGP)

- □ developed for use with TCP/IP model
- □ is preferred exterior routing protocol of the Internet
- uses messages sent over TCP connections
- □ current version is BGP-4 (RFC 1771, RFC 4271)

Open	Used to open a neighbor relationship with another router.
Update	Used to (1) transmit information about a single route and/or (2) list multiple routes to be withdrawn.
Keepalive	Used to (1) acknowledge an Open message and (2) periodically confirm the neighbor relationship
Notification	Send when an error condition is detected.

Reference

 Data and Computer Communications, William Stallings, 9th edition, section 19.2

Least Cost Algorithms

- basis for routing decisions
 - can minimize hop with each link cost 1
 - or have link value inversely proportional to capacity
- defines cost of path between two nodes as sum of costs of links traversed
 - □ in network of nodes connected by bi-directional links
 - where each link has a cost in each direction
- for each pair of nodes, find path with least cost
 link costs in different directions may be different
- alternatives: Dijkstra or Bellman-Ford algorithms

Dijkstra's Algorithm Example											
Iter	Т	L(2)	Path	L(3)	Path	L(4)	Path	L(5)	Path	L(6)	Path
1	{1}	2	1–2	5	1-3	1	1–4	8	-	8	-
2	{1,4}	2	1–2	4	1-4-3	1	1–4	2	1-4–5	8	-
3	{1, 2, 4}	2	1–2	4	1-4-3	1	1–4	2	1-4–5	8	-
4	{1, 2, 4, 5}	2	1–2	3	1-4-5–3	1	1–4	2	1-4–5	4	1-4-5–6
5	{1, 2, 3, 4, 5}	2	1–2	3	1-4-5–3	1	1–4	2	1-4–5	4	1-4-5–6
6	{1, 2, 3, 4, 5, 6}	2	1-2	3	1-4-5-3	1	1-4	2	1-4–5	4	1-4-5-6