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Outline

• Focus on Dijkstra’s Algorithm

• Importance: Where it has been used?

• Algorithm’s general description

• Algorithm steps in detail

• Example
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One-To-All Shortest Path Problem
We are given a weighted network (V, E, C) with node set V , edge set E,

and the weight set C specifying weights cij for the edges (i, j) ∈ E. We are

also given a starting node s ∈ V . The one-to-all shortest path problem is

the problem of determining the shortest path from node s to all the other

nodes in the network.

The weights on the links are also referred as costs.
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Algorithms Solving the Problem

• Dijkstra’s algorithm

• Solves only the problems with nonnegative costs, i.e.,

cij ≥ 0 for all (i, j) ∈ E

• Bellman-Ford algorithm

• Applicable to problems with arbitrary costs

• Floyd-Warshall algorithm

• Applicable to problems with arbitrary costs

• Solves a more general all-to-all shortest path problem

Floyd-Warshall and Bellman-Ford algorithm solve the problems on graphs

that do not have a cycle with negative cost.
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Importance of Dijkstra’s algorithm

Many more problems than you might at first think can be cast as shortest

path problems, making Dijkstra’s algorithm a powerful and general tool.

For example:

• Dijkstra’s algorithm is applied to automatically find directions between

physical locations, such as driving directions on websites like Mapquest

or Google Maps.

• In a networking or telecommunication applications, Dijkstra’s algorithm

has been used for solving the min-delay path problem (which is the

shortest path problem). For example in data network routing, the goal

is to find the path for data packets to go through a switching network

with minimal delay.

• It is also used for solving a variety of shortest path problems arising in

plant and facility layout, robotics, transportation, and VLSI∗ design
∗Very Large Scale Integration
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General Description

Suppose we want to find a shortest path from a given node s to other nodes

in a network (one-to-all shortest path problem)

• Dijkstra’s algorithm solves such a problem

• It finds the shortest path from a given node s to all other nodes in

the network

• Node s is called a starting node or an initial node

• How is the algorithm achieving this?

• Dijkstra’s algorithm starts by assigning some initial values for the

distances from node s and to every other node in the network

• It operates in steps, where at each step the algorithm improves the

distance values.

• At each step, the shortest distance from node s to another node is

determined
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Formal Description

The algorithm characterizes each node by its state

The state of a node consists of two features:

distance value and status label

• Distance value of a node is a scalar representing an estimate of the its

distance from node s.

• Status label is an attribute specifying whether the distance value of a

node is equal to the shortest distance to node s or not.

• The status label of a node is Permanent if its distance value is equal

to the shortest distance from node s

• Otherwise, the status label of a node is Temporary

The algorithm maintains and step-by-step updates the states of the nodes

At each step one node is designated as current
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Notation

In what follows:

• d` denotes the distance value of a node `.

• p or t denotes the status label of a node, where p stand for permanent

and t stands for temporary

• cij is the cost of traversing link (i, j) as given by the problem

The state of a node ` is the ordered pair of its distance value d` and its

status label.
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Algorithm Steps

Step 1. Initialization

• Assign the zero distance value to node s, and label it as Permanent.

[The state of node s is (0, p).]

• Assign to every node a distance value of ∞ and label them as

Temporary. [The state of every other node is (∞, t).]

• Designate the node s as the current node
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Step 2. Distance Value Update and Current Node Designation Update
Let i be the index of the current node.

(1) Find the set J of nodes with temporary labels that can be reached

from the current node i by a link (i, j). Update the distance values

of these nodes.

• For each j ∈ J , the distance value dj of node j is updated as follows

new dj = min{dj, di + cij}

where cij is the cost of link (i, j), as given in the network problem.

(2) Determine a node j that has the smallest distance value dj among all

nodes j ∈ J ,

find j∗ such that min
j∈J

dj = dj∗

(3) Change the label of node j∗ to permanent and designate this node as

the current node.
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Step 3. Termination Criterion

If all nodes that can be reached from node s have been permanently

labeled, then stop - we are done.

If we cannot reach any temporary labeled node from the current node,

then all the temporary labels become permanent - we are done.

Otherwise, go to Step 2.
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Dijkstra’s Algorithm: Example

We want to find the shortest path from node 1 to all other nodes using

Dijkstra’s algorithm.
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Initialization - Step 1

• Node 1 is designated as the current

node

• The state of node 1 is (0, p)

• Every other node has state (∞, t)
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Step 2
• Nodes 2, 3,and 6 can be reached

from the current node 1

• Update distance values for these

nodes

d2 = min{∞,0 + 7} = 7

d3 = min{∞,0 + 9} = 9

d6 = min{∞,0 + 14} = 14

• Now, among the nodes 2, 3, and 6, node 2 has the smallest distance

value

• The status label of node 2 changes to permanent, so its state is (7, p),

while the status of 3 and 6 remains temporary

• Node 2 becomes the current node
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Step 3

Graph at the end of Step 2

We are not done, not all nodes have been reached from node 1, so we

perform another iteration (back to Step 2)
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Another Implementation of Step 2

• Nodes 3 and 4 can be reached

from the current node 2

• Update distance values for these

nodes

d3 = min{9,7 + 10} = 9

d6 = min{∞,7 + 15} = 22

• Now, between the nodes 3 and 4 node 3 has the smallest distance value

• The status label of node 3 changes to permanent, while the status of 6

remains temporary

• Node 3 becomes the current node

We are not done (Step 3 fails), so we perform another Step 2
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Another Step 2

• Nodes 6 and 4 can be reached

from the current node 3

• Update distance values for them

d4 = min{22,9 + 11} = 20

d6 = min{14,9 + 2} = 11

• Now, between the nodes 6 and 4 node 6 has the smallest distance value

• The status label of node 6 changes to permanent, while the status of 4

remains temporary

• Node 6 becomes the current node

We are not done (Step 3 fails), so we perform another Step 2
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Another Step 2

• Node 5 can be reached from the

current node 6

• Update distance value for node 5

d5 = min{∞,11 + 9} = 20

• Now, node 5 is the only candidate, so its status changes to permanent

• Node 5 becomes the current node

From node 5 we cannot reach any other node. Hence, node 4 gets

permanently labeled and we are done.
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Chapter 6.3.2 in your book has another example of the implementation of

Dijkstra’s algorithm
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