TCP Connection Establishment and Termination

Connection Establishment and Termination

• required by connection-oriented transport protocols like TCP
• need connection establishment and termination procedures to allow:
 – each end to know the other exists
 – negotiation of optional parameters
 – triggers allocation of transport entity resources
Assume a reliable network (no loss seen at the transport layer).

What if either SYN is lost? (discussed later)
Connection Termination

- either or both sides by mutual agreement
- graceful or abrupt termination
- if graceful, initiator must:
 - send FIN to other end, requesting termination
 - place connection in FIN WAIT state
 - when FIN received, inform user and close connection
- other end must:
 - when receives FIN must inform TS user and place connection in CLOSE WAIT state
 - when TS user issues CLOSE primitive, send FIN & close connection

Connection Establishment

- two way handshake
 - A send SYN, B replies with SYN
 - lost SYN handled by re-transmission
 - ignore duplicate SYNs once connected
- lost or delayed data segments can cause connection problems
 - eg. segment from old connection
Two Way Handshake: Obsolete Data Segment

Solution: starting SN is far away from the last SN of the previous connection.

Use request of the form SYNi where $i + 1$ is the SN of the first data segment to be sent.

Two Way Handshake: Obsolete SYN Segment

Connection closed

Obsolete SYNi arrives

B responds; A sends new SYN

B discards duplicate SYN

B rejects segment as out of sequence
TCP Three Way Handshake: State Diagram

TCP Three Way Handshake: Examples
TCP Connection Establishment: Summary

- three way handshake
 - SYN, SYN-ACK, ACK
- connection determined by source and destination sockets (host, port)
- can only have a single connection between any unique pairs of ports
- but one port can connect to multiple ports

Connection Termination (2)

- also need 3-way handshake
- misordered segments could cause:
 - entity in CLOSE WAIT state sends last data segment, followed by FIN
 - FIN arrives before last data segment
 - receiver accepts FIN, closes connection, loses data
- need to associate sequence number with FIN
- receiver waits for all segments before FIN sequence number
Connection Termination: Graceful Close

- also have problems with loss of segments and obsolete segments
- need graceful close which will:
 - send FIN i and receive AN i+1
 - receive FIN j and send AN j+1
 - wait twice maximum expected segment lifetime

Reading

- Chapter 20, Stallings’ book