Quick
Reference

for

Verilog" HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

)

Released with permission from
Automata Publishing Company

San Jose, CA 95129

Quick
Reference

for

Verilog' HDL

Rajeev Madhavan
AMBIT Design Systems, Inc.

Design Automation Series

Released with Permission
from

Automata Publishing Company
San Jose, CA 95129

Cover design: Sam Starfas
Printed by: Technical Printing, Inc. Santa Clara
Copyright 01993, 94, 95 Automata Publishing Company

UNIX isaregistered trademark of AT& T
Verilog is aregistered trademark of Cadence Design Systems, Inc.

m Copyright (11993, 94, 95 Automata Publishing Company

Published by Automata Publishing Company

In addition to this book, the following HDL books are available
from Automata Publishing Company:

1. Digital Design and Synthesiswith Verilog HDL
2. Digital Design and Synthesiswith VHDL

For additional copies of this book or for the source code to the
examples, see the order form on the last page of the book.

This book may be reproduced or transmitted for distribution provided
the copyright notices are retained on al copies. For al other rights
please contact the publishers.

Automata Publishing Company

1072 S. Saratoga-Sunnyvale Rd, Bldg A107
San Jose, CA 95129

Phone: 408-255-0705

Fax: 408-253-7916

Printed in the United States of America
1098765432

ISBN 0-9627488-4-6

Quick Reference for Verilog HDL

Preface

This is a brief summary of the syntax and semantics of¢he V
ilog Hardware Description Language. The summary is not
intended at being an exhaustive list of all the constructs and is
not meant to be complete. This reference guide also lists con-
structs that can be synthesized. For any clarifications and to
resolve ambiguities please refer to thexidg Language Refer-
ence Manual, Copyright' 1993 by Open &filog Interna-

tional, Inc. and synthesis vendorsriog HDL Reference
Manuals.

In addition to the OVI Language Reference Manual, for further
examples and explanation of ther¥og HDL, the following

text book is recommendeDigital Design and Synthesis With
Verilog HDL, Eli Sternheim, Rajvir Singh, Rajeev Madhavan
and Yatin Trivedi, Copyright=/ 1993 by Automata Publishing
Company

Rajeev Madhavan

Copyright[11993, 1994, 1995 Automata Publishing Company.

Quick Reference for Verilog HDL

Quick Reference for Verilog HDL

Quick Reference
for

Verilog HDL

1.0

2.0
30
4.0
5.0
6.0

7.0

8.0
9.0
10.0
11.0

12.0

13.0
14.0

15.0

Lexical EIBMENLScccoviieeererieieeereri et 1
LA Integer LIiteralS. .o 1
1.2 DA@ TYPES....eeevereerierierieeieeieee e 1

Registers and NELS ..o 2

Compiler DIFECLIVES......covveirieerieerieere e 3

System Tasks and FUNCLIONS..........coceovvereeereeneeseeseeseeeneens 4

Reserved KeyWords...........cooevieeererieieee e 5

Structures and Hierarchy ..o 6
6.1 Module DeClarations...........ccorvreeeeeneriseeenenesiseeesesesees 6
6.2 UDP DeClarations...........ccceeerrireiecininireciennseesnenns 7

EXpressions and OPeratorscuoeereereererienessenesseseseneesenes 10
7.1 Parallel EXPreSSiOnS........coceuererieneneneresisesessieiesenenenas 13
7.2 Conditional Statementsccovveeeeerirereneenererenienenes 13
7.3 L00PING SEAEMENLS......c.cvevererererirrererereseseeeeieieierenenas 15

Named Blocks, Disabling BIOCKS..........cccoceeereirennereineenne 16

Tasks and FUNCLIONS..........ccirreicieeenesie e 16

ContinOUS ASSIGNMENLS........c.c.curvruererererrierererereseseeseeeeeeserenenes 18

Procedural ASSIgNMENES.......covveeiererereereer e 18
11.1 Blocking Assignment 19
11.2 Non-Blocking AsSIgnmentccceevreeeneeereeeneenenns 19

Gate Types, MOS and Bidirectional Switches.............cc......... 19
12.1 Gate Delays

SPECITY BIOCKS...c.viiceeeeieieereeee et

Verilog Synthesis CONSIIUCES.........ccoeeececrerericieieierereeeesesenens 23
14.1 Fully Supported COoNnstructs.........coeevreeeneeereeereenenes 23
14.2 Partially Supported CONSrUCES........c.cvvverererereseeeenee 24
14.3 1gnored CONSLIUCESc.vevevveeereeereeesieneeeseee e 25
14.4 Unsupported CONSLIUCES..........cccuerererrerererereseseeeenee 25

TNOEX 1. 27

All rightsreserved. This document isintended as a quick
reference guide to the Verilog HDL. Verilog® isareg-
istered trademark of Cadence Design Systems, Inc.

Use and Copyright

Copyright (c) 1994, 1995 Rajeev Madhavan
Copyright (c) 1994, 1995 Automata Publishing Company

Permission to use, copy and distribute this book for any
purpose is hereby granted without fee, provided that

(i) the above copyright notices and this permission
notice appear in all copies, and

(i) the names of Rajeev Madhavan, Automata Publish-
ing and AMBIT Design Systems may not be used in any
advertising or publicity relating to this book without the
specific, prior written permission of Rajeev Madhavan,
Automata Publishing and AMBIT Design Systems.

THE BOOK IS PROVIDED "AS-IS" AND WITH-
OUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERNISE, INCLUDING WITH-
OUT LIMITATION, ANY WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR A RRTICULAR
PURPOSE.

IN NO EVENT SHALL RAJEEV MADHA/AN OR
AUTOMATA PUBLISHING OR AMBIT DESIGN
SYSTEMS BE LIABLE FOR ANY SPECIAL, INCI-
DENTAL, INDIRECT OR CONSEQUENTIAL DAM-
AGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESUTLING FROM LOSS OF USE,
PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THE-
ORY OF LIABILITY, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OF THIS BOOK.

Quick Reference for Verilog HDL

1.0 Lexical Elements

The language is case sensitive and all the keywords are lower case.
White space, namelgpaces, tabs and new-lines are ignoredldg
has two types of comments:

1. One line comments start with and end at
the end of the line

2. Multi-line comments start withh and end
with */

Variable names have to start with an alphabetic character or underscore
followed by alphanumeric or underscore characters. The only excep-
tion to this are the system tasks and functions which start with a dollar
sign. Escaped identifiers (identifier whose first characters is a backslash
(\ 1)) permit non alphanumeric characters grilbg name. The

escaped name includes all the characters following the backslash until
the first white space character

1.1Integer Literals

Binary literal 2'b1z

Octal literal 2’017
Decimal literal 9 or 'd9
Hexadecimal literal3'h189

Integer literals can have underscores embedded in them for improved
readability For examplg

Decimal literal 24_000

1.2 Data Types

The values z and Z stand for high impedance, and x and X stand for
uninitialized variables or nets with conflicting drivers. String symbols
are enclosed within double quotes{ihg ").and cannot span multi-
ple lines. Real number literals can be either in fixed notation or in sci-
entific notation.

Real and Integer Variables example

real a, b, c;// a,b,cto be real

integer j, k ; // integer variable
integer i[1:32] ; // array of integer variables

Quick Reference for Verilog HDL

Time, registers and variable usage

time newtime ;

/* time and integer are similar in functionality,
timeisanunsigned 64-bitused fortime variables
*/

reg [8*14:1] string ;
/* This def ines a vector with range
[msb_expr: Isb_expr] */

initial begin
a=0.5;// same as 5.0e-1. real variable
b=12E12;
€c=26.19_60_e-11;// 's are
/I used for readability
string = “ string example " ;
newtime =$time;
end

2.0 Registersand Nets

A register storesits value from one assignment to the next and is used
to model data storage elements.

reg [5:0] din ;
/* a 6-bit vector register: individual bits
din[5],.... din[0] */

Nets correspond to physical wires that connect instances. The default
range of awire orreg isone bit. Nets do not store values and have to
be continuously driven. If anet has multiple drivers (for example two
gate outputs are tied together), then the net value is resolved according
toitstype.

Net types
wire tri
wand triand
wor trior
trio tril
supply0 supplyl
trireg

For awire , if al the drivers have the same value then the wire
resolvesto thisvalue. If al the drivers except one have avalue of z
then thewire resolvesto the non z value. If two or more non z drivers
have different drive strength, then the wire resolves to the stronger
driver. If two drivers of equal strength have different values, then the

Quick Reference for Verilog HDL

wi re resolvestox. A trireg net behaveslikeawi r e except that
when al the drivers of the net are in high impedance (z) state, then the
net retainsitslast drivenvalue. trireg ' s areused to model capaci-
tive networks.

wire netl ;
/* wire and tri have sane functionality. tri is
used for nultiple drive internal wire */

trireg (medium capacitor ;
/* small, medium weak are used for charge
strength nodeling */

A wand net or t ri and net operates as awired and(wand) , and awor
netortrior netoperatesasawiredor (wor),tri0andtri 1 nets
model netswith resistivepul | down or pul | up devices onthem. When
atri 0 netisnot driven, then itsvalueis0. Whenatri 1 netisnot
driven, thenitsvalueis 1. suppl y0 and suppl y1 model netsthat are
connected to the ground or power supply.

wand net2 ; // wired-and

wor net3 ; // wired-or

triand [4:0] net4 ; // multiple drive wand
trior net5 ; // multiple drive wor

tri0 net6 ;

tril net7 ;

supply0o gnd ; // logic O supply wire
supplyl vcc ; // logic 1 supply wire

Memories are declared using register statements with the addressrange
specified as in the following example,

reg [15:0] nenl6X512 [0:511];

/1 16-bit by 512 word nenory

/1 meml6X512[4] addresses word 4

/1 the order Isb:msb or msb:lsb is not inportant

The keyword scal ar ed allows access to bits and parts of a bus and
vect or ed allows the vector to be modified only collectively.

wire vectored [5:0] neta;
/* a 6-bit vectored net */
tril vectored [5:0] netb;
/* a 6-bit vectored tril */

3.0 Compiler Directives

Verilog has compiler directives which affect the processing of theinput

Quick Reference for Verilog HDL

files. The directives start with a grave acqent followed by some

keyword. A directive takes fefct from the point that it appears in the
file until either the end of all the files, or until another directive that
cancels the &ct of the first one is encountered. For example,

‘def ine OPCODEADD 00010

This defines a macro name#@CODEADRDMVhen the texXOPCODEADD
appears in the text, then it is replacedb§10 . Verilog macros are
simple text substitutions and do not permguaments.

‘ifdef SYNTH <Verilog code> ‘endif

If ‘“*SYNTH is a defined macro, then theMog code until ‘endif is
inserted for the next processing phaseé SWYNTH' is not defined macro
then the code is discarded.

“include <Verilog f ile>

The code ircVerilog f ile> is inserted for the next processing
phase. Other standard compiler directives are listed below:

‘resetall - resets all compiler directives to default values
‘def ine- text-macro substitution
‘timescale 1ns/ 10ps - specifies time unit/precision
‘ifdef, ‘else, ‘endif - conditional compilation
‘include - file inclusion
‘signed, ‘unsigned - operator selection (OVI 2.0 only)
‘celldef ine, ‘endcelldef ine - library modules
‘default_nettype wire - default net types
‘unconnected_drive pullO|pulll,
‘nounconnected_drive - pullup or down unconnected ports
‘protect and ‘endprotect - encryption capability
‘protected and ‘endprotected - encryption capability
‘expand_vectornets, ‘noexpand_vectornets,
‘autoexpand_vectornets - vector expansion options
‘remove_gatename, ‘noremove_gatenames
- remove gate names for more than one instance

‘remove_netname, ‘noremove_netnames

- remove net names for more than one instance

4.0 System Tasks and Functions

System taska are tool specific tasks and functions..

$display(“Example of using function”);
/* display to screen */
$monitor($time, “a=%b, clk = %b,
add=%h",a,clk,add); // monitor signals
$setuphold(posedge clk, datain, setup, hold);
/Il setup and hold checks

Quick Reference for Verilog HDL

A list of standard system tasks and functions are listed below:

$di splay, $wite - utility todisplay information
$fdisplay, $fwite - writetofile
$strobe, $fstrobe - display/writesimulation data
$noni tor, $fnonitor - nonitor, display/write information to file
$tine, $realtinme - current simulationtime
$fi ni sh - exitthesmulator
$stop - stop the simulator
$set up - setuptiming check
$hol d, $w dt h- hold/width timing check
$set uphol d - combines hold and setup
$readrmenb/ $r eadnenh - read stimulus patterns into memory
$sreadnenb/ $sreadnenh - load datainto memory
$get pattern - fast processing of stimulus patterns
$hi story - print command history
$save, S$restart, $incsave
- saving, restarting, incremental saving
$scal e - scaling timeunits from another module
$scope - descend to aparticular hierarchy level
$showscopes - completelist of named blocks, tasks, modules...
$showars - show variablesat scope

5.0 Reserved Keywords

The following lists the reserved words of Verilog hardware description
language, as of OVI LRM 2.0.

and al ways assi gn attribute
begi n buf bufifo bufifl
case cnos deassi gn def aul t
def param di sabl e el se endattribute
end endcase endfunction endprimitive
endnodul e endtabl e endt ask event

for force forever fork
function hi ghz0 hi ghz1 if

initial i nout i nput i nteger
join | arge medi um nmodul e
nand negedge nor not
notifo0 notifl nmos or

out put paranmeter pnps posedge
primtive pul | down pul I up pul 10

pul 1 rcnos reg rel ease
repeat r nnos r pnos rtran
rtrani f0O rtranifl scal ared smal |
specify specparam strong0 strongl
suppl y0 suppl y1 tabl e t ask

tran tranifo tranifl tine

tri triand trior trireg
triO tril vect or ed wai t
wand weakO weakl whi | e
wire wor

Quick Reference for Verilog HDL

6.0 Structuresand Hierarchy

Hierarchical HDL structures are achieved by defining modules and
instantiating modules. Nested module definitions (i.e. one module defi-
nition within another) are not permitted.

6.1 Module Declar ations

The module name must be unique and no other module or primitive can
have the same name. The port list is optional. A module without a port
list or with an empty port list is typically a top level modwemacro-
module is a module withftattened hierarchy and is used by some sim-
ulators for eficiency.

modul e definition example

nmodul e dff (q,qgb,clk,d,rst);
input clk,d,rst ; // input signals
output q,qb ; // output definition

/linout for bidirectionals

/1 Net type declarations
wire dl,dbl ;

/| paraneter val ue assi gnnent
paranter delayl = 3,
del ay2 = delayl + 1; // delay2
/1 shows paraneter dependance

/* Hi erarchy primtive instantiation, port
connection in this section is by
ordered list */

nand #del ayl nl(cf,dl, cbf),
n2(cbf,clk, cf,rst);
nand #del ay2 n3(dl, d, dbl,rst),
n4(dbl, dl, clk, cbf),
n5(q, cbf, gb),
n6(qgb, dbl, g, rst);

[***** for debuging nmodel initial begin
#500 force dff_lab.rst =1 ;
#550 rel ease dff _lab.rst;
/1 upward path referencing
end ********/

endnodul e

Quick Reference for Verilog HDL

Overriding parameters example

nodul e dff_I ab;

reg data,rst;

/1 Connecting ports by nane. (map)

dff dl1 (.gb(outb), .q(out),
.clk(clk),.d(data),.rst(rst));

/1 overriding nodul e paraneters

def param
df f _l ab. df f. nl. del ayl 5,
df f _lab. dff.n2.delay2 = 6 ;

I/ full-path referencing is used

/1 over-riding by using #(8,9) delayl=8..

dff d2 #(8,9) (outc, outd, clk, outh, rst);
/1 clock generator

al ways clk = #10 ~clk ;

/1 stimulus ... contd

Stimulus and Hierarchy example

initial begin: stimuli // naned bl ock stinulus
clk = 1; data = 1; rst = 0;

#20 rst = 1;
#20 data = O;
#600 $finish;

end

initial // hierarchy: downward path referencing

begi n
#100 force dff.n2.rst = 0 ;
#200 rel ease dff.n2.rst;
end
endnodul e

6.2 User Defined Primitive (UDP) Declarations

The UDP's are used to augment the gate primitives and are defined by
truth tables. Instances of UDP's can be used in the same way as gate
primitives. There are 2 types of primitives:

1. Sequentiad UDP' s permit initialization of out put
terminals, which are declared to be of r eg type and they store values.
Level-sensitive entries take precedence over edge-sensitive
declarations. Aninput logic state Z isinterpreted asan X. Similarly, only
0, 1, Xor- (unchanged) logic values are permitted on the output.

2. Combinational UDP' s do not store values and cannot be
initialized.

The following additional abbreviations are permitted in UDP declara-
tions.

Quick Reference for Verilog HDL

L ogic/state Representation/transition Abbrevation
don't care (0, 1 or X ?
Transitions from logic x to logic y (xy). (xy)
(01), (10), (Ox), (21x), (x1), (x0)

(?1)

Transition from (01) Rorr

Transition from (10) For f

(01), (0X), (X1): positivetransition Porp

(10), (1x), (x0): negativetransition N or n

Any transition *oor (??)
bi nary don't care (0, 1) B orb

Combinational UDP$ example

/1 3to 1 mulitplexor with 2 select
primtive mux32 (Y, inl, in2, in3, sl, s2);
input inl, in2, in3, sl, s2;

out put Y,

table

/1inl in2 in3 sl s2
0o ?

V0RO R O
POV VROVUVYR oW
POROWVYROWWYN
PR,OOVYVYVOFRPPFrRoO
WV VVOORRPROOOO
I—'OHO}—‘OHO;A..C.)I—‘O'<

endt abl e

endprimtive

Quick Reference for Verilog HDL

Sequential Level Sensitive UD$example

/1 latch with async reset

primtive latch (g, clock, reset, data);
input clock, reset, data ;

out put q;

reg q;

initial g =1 bl; // initialization

table

/'l clock reset data q, q+
? 1 ?2? 0 1;
0 0 0: ?: 0;
1 0 ?20? 0 -
0 0 1: ?2:1;

endt abl e

endprimtive

Sequential Edge Sensitive UDFexample

/1 edge triggered D Flip Flop with active high,
/1 async set and reset

primtive dff (Q\, D, CP, R 9);

out put QN

input D, CP, R S;

reg QN

tabl e

/Il DCP
(01)
(01)
?

(01)
(01)
?

n+l

=
Q

/'l clocked data
pessim sm
/] pessimsm

-~
-~

(x1)

(0x)

(0x)
?

/1 asynch cl ear
/1 asynchronous set

erkRoRroOoRRROOC

R
0
0
0
0
X
? X
(x1) O
0
0
0
1
0
0
0

(2

WV *FVVVORPOR VOO WL R
e

—~
NNV VO VOOOO0O0OO0Oo X XO0OWm

ISEESERCERS B B

?
? ?
endt abl e

endprimtive

'\)-\)'\)'\)'\)'\)'\)HOHOH'\)'\)O'\)-\),Q

?

Quick Reference for Verilog HDL

7.0 Expressions and Operators

Arithmetic and logical operators are used to build expressions. Expres-
sions perform operation on one or more operands, the operands being
vectored or scalared nets, registers, bit-selects, part selects, function

calls or concatenations thereof.

Unary Expression

<oper at or > <oper and>

a =1!b;

Binary and Other Expressions
<oper and> <oper at or > <oper and>

if (a<b) /]l if (<expression>)

{c,d} =a +b;
/] concatenate and add oper at or

Parentheses can be used to change the precedence of

operators. For example(a+b) * c)

Operator precedence

Operator Precedence
+ -, !, ~ (unary) Highest
%
+, - (binary)
<<, >>
<, <=, 0> >=
= == | =
===, ==
& ~&
AAs
[~
&&
I \
?: Lowest

10

Quick Reference for Verilog HDL

e All operators associate left to right, except for the
ternary operator?:” which associates from right to

left.
Relational Operators
Operator Application
< a<b// is aless than b?
/] return 1-bit true/false
> a>b// is agreater than b?
>= a>=b// is agreater than or
/1 equal to b
<= a<=b// is aless than or
/1 equal to b
Arithmetic Operators
Operator Application
* c=a*b,; // miltiplyawithb
/ c=a/ b; /] int divide abyb
+ sum=a + b ; // add a and b
- diff =a - b ; // subtract b
// froma
% anodb = a %b ; // a nod(b)
Logical Operators
Operator Application
&& a& b ; // is aand b true?

/Il returns 1-bit true/false

| al|l b; // is aor btrue?
Il returns 1-bit true/false

! if (ta) ; // if ais not true
c=Db; // assign btoc

11

Quick Reference for Verilog HDL

Equality and I dentity Operators

Operator

Application

c=a; // assign atoc

c==a; /*is cequal toa
returns 1-bit true/false
applies for 1 or 0, logic
equal ity, using X or Z oper-
ands returns al ways fal se
‘hx == ‘h5 returns 0 */

cl=a,; // iscnot equal to
/1 a, retruns 1-bit true/
/1 false logic equality

=== a===Db; // isaidentical to
/1 b (includes 0, 1, x, z) /
/1l *hx === ‘h5 returns 0

| == al==b; // is a not

/'l identical to b returns 1-
/1 bit true/false

Unary, Bitwise and Reduction Operators

Operator

Application

+

Unary plus & arithmetic(binary) addition

Unary negation & arithmetic (binary) sub-
traction

b = & ; // AND dl bitsof a

b

|a ; //ORall bits

b = ~a ; [/ Exclusiveor all bitsof a

NAND, NOR, EX-NOR all hits to-gether
c=~&b; d=~ a e="c;

bit-wise NOT, AND, OR, EX-OR

b ~a ; // invert a

b&a; // bitwise ANDa, b
b | a; // bitwise OR

b ra; // bitwise EX-OR

c
e
f

~& -,

bit-wise NAND, NOR, EX-NOR
c a~&b; d=a-~ b;
e a-~"b;

12

Quick Reference for Verilog HDL

Shift Operators and other Operators

Operator Application

<< a<<1; /] shift left a by
/1 1-bit

>> a>>1; // shift right aby 1

?: c=sel 2a: b; /*if sel
istruec =a, elsec ="b,
?: ternary operator */

{} {co, sum} =a +b +ci ;
/* add a, b, ci assign the
overflow to co and the re-
sult to sum operator is
call ed concatenation */

{{}} b = {3{a}} /* replicate a 3

tinmes, equivalent to {a, a,
a} */

7.1 Parallel Expressions

fork ... join are used for concurrent expression assignments.

fork ... joinexample
initial
begi n: bl ock
fork
/1 This waits for the first event a
/1 or b to occur
@ di sabl e bl ock ;
@ disabl e bl ock ;
/] reset at absolute time 20
#20 reset =1 ;
/] data at absolute tinme 100
#100 data = 0 ;
/] data at absolute tinme 120
#120 data = 1 ;
join
end

7.2 Conditional Statements

The most commonly used conditional statement istheif, if ... else...
conditions. The statement occurs if the expressions controlling the if
statement eval uates to true.

13

Quick Reference for Verilog HDL

if .. else ..conditions example

always @rst)// sinple if -else

if (rst)
/'l procedural assignment
q=0;

else // renove the above continous assign
deassi gn q;

al wvays @WRI TE or READ or STATUS)
begi n
/1 if - else - if
if ('WRITE) begin
out = ol dval ue ;
end
else if (!STATUS) begin
g = newstatus ;
STATUS = hol d ;
end
else if (! READ) begin
out = newal ue ;
end
end

case, casex, casez:case Statementsareused for switching

between multiple selections (i f (casel) ... else if (case2)
el se ...). Ifthereare multiple matchesonly thefirst isevalu-

ated. casez treats high impedance values as don’t care’'s and casex
treats both unknown and high-impedance as don’t care’s.

case statement example

nodul e d2X8 (select, out); // priority encode
input [0:2] select;
output [0:7] out;
reg [0:7] out;
al ways @sel ect) begin

out = 0;

case (select)
0: out[0] = 1;
1: out[1] = 1,
2: out[2] = 1;
3: out[3] = 1;
4: out[4] = 1;
5: out[5] = 1;
6: out[6] = 1;
7: out[7] = 1;

endcase

end
endnodul e

14

Quick Reference for Verilog HDL

casex statement example

casex (state)
/] treats both x and z as don’t care
/1 during conparison : 3'b0l1z, 3'b01lx, 3b’011
/1 ... match case 3’ b01x
3’ b01lx: fsm=0
3" bOxx: fsm=1 ;
defaul t: begin
/1 default matches all other occurances
fsm=1;
next_state = 3'b011
end
endcase

casez statement example

casez (state)
/Il treats z as don’t care during conparison
/1l 3 bllz, 3'blzz, ... match 3'b1??: fsm=0
3" b1??: fsm=0; // if MSBis 1, matches 3?b17??
3'b01?: fsm=1;
defaul t: $display(“wong state”) ;

endcase

7.3 Looping Statements

forever, for, while and repeat loopsexample

forever
/1 shoul d be used with disable or timng contro
@ posedge clock) {co, sun} = a + b + ci

for (i =0 ; i <7 ; i=i+l)
menory[i] =0 ; // initialize to O

for (i =0 ; i <=bit-width ; i=i+l)
/'l multiplier using shift left and add
if (a[i]) out = out + (b << (i-1)) ;

repeat (bit-w dth) begin

if (a[0]) out = b + out

b b << 1; // muliplier using
a<<1; /] shift left and add

a
end

whi | e(del ay) begin @ posedge cl k)
Idlang = ol dldlang
delay = delay - 1

end

15

Quick Reference for Verilog HDL

8.0 Named Blocks, Disabling Blocks

Named blocks are used to create hierarchy within modules and can be
used to group a collection of assignments or expressions. di sabl e
statement is used to disable or de-activate any named block, tasks or
modules. Named blocks, tasks can be accessed by full or reference
hierarchy paths (example df f _I ab. sti mul i). Named blocks can
have local variables.

Named blocks and di sabl e statement example

initial forever @ posedge reset)
di sable MAIN ; // disable naned bl ock
/1 tasks, nodul es can al so be disabl ed

al ways begin: MAIN // defining naned bl ocks
if (tqgfull) begin

#30 recv(new, newdata) /1 call task
if (new) begin
q[head] = newdata ;
head = head + 1 ; // queue
end
end
el se
di sable recv ;
end // MAIN

9.0 Tasks and Functions

Tasks and functions permit the grouping of common procedures and
then executing these procedures from different places. Arguments are
passed in the form of input/inout values and al calls to functions and
tasks share variables. The differences between tasks and functions are

Tasks

Functions

Permits time control

Executes in one simulation
time

Can have zero or more argu-
ments

Require at least one input

Does not return value,
assigns value to outputs

Returns asingle value, no
special output declarations
required

Can have output arguments,
permits#, @ ->,
wait, task cals.

Does not permit out put s,
#, @ -> wait, task
cals

16

Quick Reference for Verilog HDL

t ask Example

77T task are declared W thin nodul es
task recv ;

output valid ;

output [9:0] data ;

begi n
valid = inreg ;
if (valid) begin
ackin =1 ;
data = qin ;
wait(inreg) ;
ackin = 0 ;
end
end

/1 task instantiation
al ways begin: MAIN //nanmed definition
if (!gfull) begin
recv(new, newdata) ; // call task
if (new) begin
g[head] = newdata ;
head = head + 1 ;
end
end el se
di sabl e recv ;
end // MAIN

functi on Example

nodul e foo2 (cs, inl, in2, ns);

input [1:0] cs;

input inl, in2;

output [1:0] ns;

function [1:0] generate_next_state;

input[1:0] current_state ;

input inputl, input2 ;

reg [1:0] next_state ;

/1 inputl causes 0->1 transition

/1 input2 causes 1->2 transition

/1 2->0 illegal and unknown states go to O

begi n

case (current_state)
2'h0 : next_state = inputl ? 2°hl : 2'h0 ;
2'hl : next_state = input2 ? 2°h2 : 2'hl ;
2'h2 : next_state = 2'h0 ;
default: next_state = 2'hO ;

endcase

generate_next_state = next_state;

end

endfunction // generate_next_state

assign ns = generate_next_state(cs, inl,in2) ;
endnodul e

17

Quick Reference for Verilog HDL

10.0 Continous Assignments

Continous assignments imply that whenever any change on the RHS of
the assignment occurs, it is evaluated and assigned to the LHS. These
assignments thus drive both vector and scalar values onto nets. Conti-
nous assignments always implement combinational logic (possibly
with delays). The driving strengths of a continous assignment can be
specified by the user on the net types.

e Continous assignment on declaration

/* since only one netl5 declaration exists in a
gi ven nodul e only one such decl arative conti nous
assi gnment per signal is allowed */

wire #10 (atrongl, pull0) netl5 = enable ;

/* delay of 10 for continous assignment with
strengths of logic 1 as strongl and logic 0 as
pul 10 */

e Continous assignment on aready declared nets

assign #10 net1l5 = enable ;
assi gn (weakl, strong0) {s,c} =a + b ;

11.0 Procedural Assignments

Assignments to register data types may occur within al ways, i ni -
tial, task and functions . These expressions are controlled by
triggers which cause the assignments to evaluate. The variablesto
which the expressions are assigned must be made of bit-select or part-
select or whole element of ar eg, i nt eger, real ortinme. Thesetrig-
gerscan be controlled by loops,i f, el se ... constructs. assi gn and
deassi gn areused for procedural assignments and to remove the con-
tinous assignments.

nodul e dff (q,qgb,clk,d,rst);
output q, gb;
input d, rst, clk;
reg g, gb, tenp;
al ways
#1 gb = ~q ; // procedural assignment

al ways @rst)
/'l procedural assignnent with triggers
if (rst) assign q = tenp;
el se deassign q;

al ways @ posedge cl k)
temp = d;
endnodul e

18

Quick Reference for Verilog HDL

force and rel ease arealso procedural assignments. However, they
canforce orrel ease valueson net data types and registers.

11.1 Blocking Assignment

nodul e adder (a, b, ci, co, sumclk)
input a, b, ci, clk ;
out put co, sum;
reg co, sum
al wvays @ posedge clk) // edge control
/] assign co, sumw th previous val ue of a,b,ci
{co,sun} = #10 a + b + ci ;

endnodul e

11.2 Non-Blocking Assignment

Allows scheduling of assignments without blocking the procedural
flow. Blocking assignments allow timing control which are delays,
whereas, non-blocking assignments permit timing control which can be
delays or event control. The non-blocking assignment is used to avoid
race conditions and can model RTL assignments.

/* assune a = 10, b= 20 ¢c = 30 d = 40 at start of
bl ock */

al wvays @ posedge cl k)
begi n: bl ock
a <= #10 b ;
b <= #10 c ;
c <= #10 d ;
end

/* at end of block + 10 tinme units, a =20, b = 30
c = 40 */

12.0 Gate Types, MOS and Bidirectional
Switches

Gate declarations permit the user to instantiate different gate-types and
assign drive-strengths to the logic values and also any delays

<gat e- decl arati on> :: = <conponent >
<drive_strength>? <del ay>? <gate_i nstance>
<, ?<gat e_i nstance. . >> ;

19

Quick Reference for Verilog HDL

Gate Types Conponent
Gates Allows and, nand, or,
strengths nor, xor, xnor
buf, not
Three State Allows bui f0, bufifl
Drivers strengths notifo, notifl
MOS No strengths nnos, pnos, cnos,
Switches rnnos, r pnos, r cnNos
Bi-directional No strengths, tran, tranifo,
switches non resistive tranifl
No strengths, rtran,rtranifo,
resistive rtranifl
Allows pul | up
strengths pul | down

Gates, switch types, and their instantiations

cnos il (out, datain, ncontrol, pcontrol);
nnos i 2 (out, datain, ncontrol);

prnos i3 (out, datain, pcontrol);

pul lup (neta) (netb);

pul | down (netc);

nor i4 (out, inl, in2, .);

and i5 (out, inl, in2, L)

nand i6 (out, inl, in2, ...);

buf i7 (outl, out2, in);

bufifl i8 (out, in, control);

tranifl i9 (inoutl,

inout2, control);

Gate level instantiation example

Il Gate |evel

nor (highzi,

instantiations

in2);
/] instantiates a nor gate with out
/1 strength of highzl (for 1) and
/1 strong0 for O #(2:3:5) is the
/1 mn:typ: max del ay

strong0) #(2:3:5) (out, ini,

pul lupl (strongl) netl;
/1 instantiates a | ogic high pullup

cnos (out, data,

/1 MOS devices

ncontrol, pcontrol);

20

Quick Reference for Verilog HDL

The following strength definitions exists
e A4drivestrengths (supply, strong, pull,
weak)
» 3capacitor strengths (I ar ge, nedi um snal |)

e 1 high impedance state hi ghz

The drive strengths for each of the output signals are

e Strength of an output signal with logic value 1
suppl y1, strongl, pulll, |argel, weakl,
hi ghz1

e Strength of an output signal with logic value 0
suppl yO, strongO, pullO0, |arge0, weakO,

hi ghz0
Logic 0 Logic1 Strength
suppl y0 Su0 suppl y1 Sul 7
strong0 Sto strongl St1 6
pull0 Pu0 pul 1 Pul 5
| arge La0 | arge Lal 4
weak0 W0 weak1 Vel 3
medi um Me0 medi um Mel 2
smal | SnD smal | Smil 1
hi ghz0 Hi 0 hi ghz1 Hi 0 0
12.1 Gate Delays

The delays alow the modeling of risetime, fall time and turn-off
delays for the gates. Each of these delay types may be in the min:typ:-
max format. The order of thedelaysare #(trise, tfall, tturn-
of f) . For example,

nand #(6:7:8, 5:6:7, 122:16:19)
(out, a, b);

21

Quick Reference for Verilog HDL

Del ay Model
#(del ay) min:typ:max delay
#(del ay, del ay) rise-time delay, fall-time delay,
each delay can be with
min:typ:max

#(del ay, delay, delay) rise-time delay, fall-time delay
and turn-off delay, each min:t-
yp:max

For trireg, thedecay of the capacitive network is modeled using the
rise-time delay, fall-time delay and charge-decay. For example,

trireg (large) #(0,1,9) capacitor
/1 charge strength is large
/1 decay with tr=0, tf=1, tdecay=9

13.0 Specify Blocks

A specify block isused to specify timing information for the modulein
which the specify block is used. Specparams are used to declare delay
constants, much like regular parameters inside a module, but unlike
module parameters they cannot be overridden. Paths are used to declare
time delays between inputs and outputs.

Timing Information using speci f y blocks

specify // simlar to defparam used for timing
specparam del ayl = 25.0, delay2 = 24.0;

/| edge sensitive delays -- sone sinulators
/1 do not support this
(posedge clock) => (outl +: inl) =
(del ayl, del ay2)
/1 conditional delays
if (OPCODE == 3" h4) (inl, in2 *> outl)
= (del ayl, del ay2)
[/l +: inplies edge-sensitive +ve polarity
[/l -: inplies edge sensitive -ve polarity
/1 *> inplies multiple paths

Il level sensitive delays
if (clock) (inl, in2 *> outl, out2) = 30 ;
/'l setuphold
$set uphol d(posedge cl ock &&& reset,
inl & & reset, 3:5:6, 2:3:6);
(reset *> outl, out2) = (2:3:5,3:4:5);

endspeci fy

22

Quick Reference for Verilog HDL

Verilog

Synthesis Constructs

The following is a set of &tilog constructs that are supported by most
synthesis tools at the time of this writingh frevent variations in sup-
ported synthesis constructs from tool to tool, this is the least common
denominator of supported constructsollreference guides cover spe-
cific constructs.

14.0 Verilog Synthesis Constructs

Since it is very dfiicult for the synthesis tool to find hardware with

exact delays, all absolute and relative time declarations are ignored by
the tools. Also, all signals are assumed to be of maximum strength
(strength 7). Boolean operations &nand Z are not permitted. The
constructs are classified as

* Fully supported constructs — Constructs that are
supported as defined in the Verilog Language Reference
Manual

» Partially supported — Constructs supported with
restrictions on them

* Ignored constructs — Constructs that are ignored by the
synthesis tool

* Unsupported constructs — Constructs which if used,
may cause the synthesis tool to not accept the Verilog
input or may cause different results between synthesis
and simulation.

14.1 Fully Supported Constructs

<nodul e instanti ation,

wi th named and positional notations>
<integer data types, with all bases>
<identifiers>
<subranges and slices on right-hand

si de of assignnent>
<continuous assi gnnment s>
>> <<, 7?2 {}

assign (procedural and declarative), begin, end
case, casex, casez, endcase
def aul t

23

Quick Reference for Verilog HDL

di sabl e
function,
if, else,
input, output,
wire, wand, wor,
integer, reg
macr onodul e,
par anet er
suppl yO, supplyl
task, endtask

endf unction
else if

i nout
tri

nmodul e

14.2 Partially Supported Constructs

Construct

Constraints

when both operands constant
or 2nd operand power of 2.

only edge-triggered events.

bounded by static variables:
only use “+” or “-” toindex.

posedge, negedge

only with al ways @ .

primtive,
endprimtive
t abl e, endt abl e

Combinational and edge-sen
sitive user defined primitives
are often supported.

limitations on usagwith
blockingassignment.

and, nand, or, gate types supported

nor, Xxor, Xxnor, without X or Z constructs
buf, not, buifO,

bufifl, notifo,

notifl

v, && ||, ~ & operators supported without X
[, ™" . & or Z constructs

~l, 4 -, < >

24

Quick Reference for Verilog HDL

14.3 Ignored Constructs

<intra-assignnment timng control s>

<del ay specifications>

scal ared, vectored

smal |, |arge, medium

speci fy

tinme (sone tools treat these as integers)

weakl, weakO, highzO0, highzl, pullO, pulll

$keyword (sone tools use these to set
synt hesi s constraints)

wait (sone tools support wait with a
bounded condi tion)

14.4 Unsupported Constructs

<assignment with variable used as bit sel ect
on LHS of assignment>
<gl obal vari abl es>

cnDs, nnos, rcnos, rnnos, pnos, I pnos
deassi gn

def param

event

force

fork, join

forever, while

initial

pul I up, pull down

rel ease

r epeat

rtran, tran, tranif0, tranifl, rtranifO

rtrani fl
table, endtable, primtive, endprimtive

All rights reserved. Please send any feedback to the author.
Verilog® is aregistered trademark of Cadence Design Sys-
tems, Inc.

25

Quick Reference for Verilog HDL

- NOTES -

26

Quick Reference for Verilog HDL

Symbols

$display, $write 5
$fdisplay, Sfwrite 5
$finish 5

$getpattern 5

$history 5

$hold, $width 5

$monitor, $fmonitor 5
$readmemb, $readmemh 5
$save, $restart, $incsave 5
$scale 5

$scope, $showscopes 5
$setup, $setuphold 5
$showvars 5
$sreadmemb/$sreadmemh 5
$stop 5

$strobe, $fstrobe 5

$time, $reatime 5

**/1

11
‘autoexpand_vectornets 4
‘celldefine, ‘endcelldefine 4
‘default_nettype 4

‘define 4
‘expand_vectornets 4
‘noexpand_vectornets 4
‘ifdef, ‘else, ‘endif 4
‘include 4
‘nounconnected_drive 4
‘protect, ‘endprotect 4
‘protected, ‘ endprotected 4
‘remove_gatename 4
‘noremove_gatenames 4
‘remove_netname 4
‘noremove_netnames 4
‘resetall 4

‘signed, ‘unsigned 4
‘timescale 4

‘unconnected drive 4

A
Arithmetic Operators 11
B

Binary Expressions 10
blocking assignment 19

C

case 14

casex 14

casez 14

compiler directives 3
continous assignments 18

D

delays21
disable 16

E

Equality Operators 12
Escaped identifiers 1
Expressions 10

F

for 15

forever 15

fork ... join 13

Fully Supported Synthesis Con-
structs 23

function 16

G

Gate declaration 19
gate-types 19

if, if ... else 13
Integer literals 1
Identity Operators 12

L
Logical Operators 11
M

Memories 3
module 6

N

Named blocks 16
Nets 2
non-blocking assignments 19

27

Quick Reference for Verilog HDL

@) \

Operator precedence 10 vectored 3

P w

Partidly Supported Synthesis wait 16
Constructs 24 wand 3

procedural assignments 18 while 15

pulldown 3 wire 2

pullup 3 wor 3

R X

reg, register 2 X, X1

Relational Operators 11

repeat 15 YA

reserved words 5 271

S

scalared 3

Sequential edge sensitive UDP 9
Sequential level sensitive UDP 9
Shift, other Operators 13

specify block 22

specparam 22

String symbols 1

supply0 3

supplyl 3

switch types 20

Synthesis Constructs 23
Synthesis Ignored Constructs 25
Synthesis Unsupported Con-

structs 25

T

task 16

tri0 3

tril3

triand 3

trior 3

trireg 3

U

UDP7

Unary Expression 10

Unary, Bitwise and Reduction
Operators 12

28

Verilog HDL Publications Order Form

Automata Publishing Company
1072 S. Saratoga Sunnyvale Rd., Bldg. A107, Ste 325,
San Jose CA-95129. U.SA
Phone: 408-255-0705 Fax: 408-253-7916

Verilog Publications:
Publication 1.Digital Design and Synthesis with Verilog HDL
Publication 2.Digital Design and Synthesis with Verilog HDL +
Source diskette + Quick Reference for Verilog HDL

Name: Title:

Company:

Address:

City:

State: Zip:

Ph: Fax:
Publication 1 2

Quantity

Price per book (see below)

Shipping (see below)

Salex Tax (CA residentsonly,
@current rate)

Total amount due

P.O Number if any:

Charge my VisssMC/AMEXp. #

Expires on:
Publication 1 2
Qty-Price/copy | (US$) (US$)

1-4 59.95 65.95
59 54.95 60.95

10-19 49.95 54.95

20- 44 44.95 49.95

45 - 99 39.95 44.45

100 - 500 34.95 39.00

Shipping/copy | 3.00 3.00

For large volume discounts contact Automata Publishing Company

Quick Reference

for

Verilog® HDL

Rajeev Madhavan

This is a brief summary of the syntax and semantics of
the \erilog Hardware Description Language. The
reference guide describes all therilog HDL constructs
and also lists the Regist&€ransfer Level subset of the
Verilog HDL which is used by the existing synthesis
tools. Examples are used to illustrate constructs in the
Verilog HDL.

Automata Publishing Compan$an Jose, CA 95129

ISBN 0-9627488-4-6

