
1

Chapter 2
Using Hardware Description

Language
Verilog

Mokhtar Aboelaze
based on slides by Dr. Shoab A. Khan

CSE4210 Winter 2012

Overview

• Algorithm development isa usually done in
MATLAB, C, or C++

• Code must be structured such that H/W and S/W
designers can correlate various components

• H/W is written in Verilog (or any other HDL).
• SystemVerilog enhances some of the features of

Verilog for design, but more importantly for
verification

2

Verilog – An Overview

• “Though Verilog is C like in syntax but has
distinct character and interpretation. A
programmer must set his perception right before
coding in Verilog. He must visualize hardware in
his mind while structuring Verilog modules
consisting of procedural blocks and
assignments.”

• Some constructs in Verilog is for supporting
verification, modeling, and simulation and do not
synthesize (RTL Verilog is synthesizable).

System Level Design
Algorithm Development

Design
Specification

Floating Point
Behavioral
Description

S/W – H/W

Partitioning

S/W – H/W

Co-verification

S/W

Fixed Point
Implementation

S/W

System
Integration &

Testing

Hardware Development
and Testing

H/W

Fixed point
conversion

RTL Verilog
Implementation

Functional
Verification

Synthesis

Gate level
netlist

layout

Timing &
Functional
Verification

S
of

tw
ar

e
de

ve
lo

pm
en

t a
nd

 te
st

in
g

S
ys

te
m

 le
ve

l d
es

ig
n

 v
er

ifi
ca

tio
n

an
d

te
st

in
g

3

Verilog
• A Verilog code has a top level module which

may instantiate many other modules.
• The module is the basic building block in Verilog
• A module when synthesized infers digital logic.
• The designer conceives the design as

hierarchically interconnected lower level
modules forming higher level modules

• Each module starts with the keyword module,
followed by the module name and parameters
list. The module is ended with the keyword
endmodule.

Modules

module FA (<port declaration>);

.

.

.

endmodule

module FA (
input a,
Input b,
input c_in,
output sum,
output c_out);

assign {c_out,sum} = a+b+c_in;
endmodule

4

RTL Design

• At RTL level the designer must know all
the registers in the design

• The computations performed are modeled
by a combinational cloud

• Gate level details are not important
• HDLs Verilog/VHDL are used to

implement a design at RTL level
• Verilog resembles with C and is usually

preferred in industry

RTL Design

5

Verilog Standards
• 1995: IEEE Standard 1364-1995 (Verilog 95)
• 2002: IEEE Standard 1364-2001 (Verilog 2001)
• 2003: IEEE Standard 1364-2001 revision C
• 2005: IEEE Standard 1364-2005 (Verilog 2005)

“1364-2005 IEEE Standard for Verilog
Hardware Description Language”

• 2005: IEEE Standard 1800-2005
(SystemVerilog) “1800-2005 IEEE Standard for
System Verilog: Unified Hardware Design,
Specification and Verification Language

Design Partitioning

• If possible partition such that boundaries reside at
register outputs.

• No combination cloud crosses module boundaries
• Gives synthesis tool more leverage to generate

optimized logic

Module 1

Cloud 1 Cloud 2

Cloud 3

Module 2

Module 3

6

System Level Design Tips
• Algorithms are designed in MATLAB, C, …
• Must meet the Requirements and specifications
• System designer must define all the components (input,

output, and functionality). and the data flow among the
components.

• The components are mapped to ASIC, FPGA, or
embedded DSP’s.

• It is preferred that the designers in the subsequent
phases to stick to the same components and variables
names as far as possible to ease going back and forth in
the design cycle

Hierarchical Design

fa0

FA

fa1

FA

fa2

FA

b
a

3

3

c_in

3

1 1

1 1 1 1 1 1
a[0] b[0] a[1] b[1] a[2] b2]

sum

sum[0]
sum[1] sum[2]

c_out

7

Hierarchical Design

module FA (
input a,
Input b,
input c_in,
output sum,
output c_out);

assign {c_out,sum} = a+b+c_in;
endmodule

module RCA (
input [2:0] a,b,
input c_in,
output [2:0] sum,
output c_out);

wire carry[1:0];
//Module instantiation
FA fa0(a[0],b[0],c_in, sum[0],carry[0]);
FA fa1(a[1],b[1],carry[0], sum[1],carry[1]);
FA fa2(a[2],b[2],carry[1], sum[2],c_out);
endmodule

Hierarchical Design

• Another way to do it without the need to
order the parameters

module RCA (
input [2:0] a,b,
input c_in,
output [2:0] sum,
output c_out);

wire carry[1:0];
//Module instantiation
FA fa0(a[0],b[0],c_in, sum[0],carry[0]);
FA fa1(a[1],b[1],carry[0], sum[1],carry[1]);
FA fa2(a[2],b[2],carry[1], sum[2],c_out);
endmodule

FA fa0(.a(a[0]),.b(b[0]),.c_in(c_in), .sum(sum[0]) ,.c_out(carry[0]));

8

Synthesis Guidelines

• Avoid glue logic that connects 2 modules
• Individual modules may satisfy timing

conditions, but top level module may not.
• Such a logic should be made as a part of

the combinational logic in one or the two
modules.

• This may arise in debugging or after
changing/correcting one of the interfaces
of a module.

9

Synthesis Guidelines

• Design modules with common design
objectives

• Try to avoid oputting time-critical and non-
time-critical logic in the same modules.

• Time critical logic will de synthesized for
best timing, while non-time-critical logic
may be synthesized for minimum area.

• Split them into two modules

10

Verilog Syntax
• 0 zero, logic low, false, or ground
• 1 one, logic high, or power
• x unknown
• z high impedance, unconnected, or tri-state port
• A number in Verilog may contain all four

possible values:
• Example: 20‟b 0011_1010_101x_x0z0_011z
• The underscore (_) is ignored by simulation and

synthesis tools. It is meant to give a better
visualization of the number

11

Data Types
• Nets

– Nets are physical connections between components
– Nets always show the logic value of the driving

components
– Many types of nets, we use wire in RTL
– Usually is the output of a combinational logic

• Registers
– Implicit storage – unless variable of this type is

modified it retains previously assigned value
– Does not necessarily imply a hardware register
– Register type is denoted by reg

Variable Declaration
• Declaring a net, signed or unsigned

– wire [<signed>] [<range>] <net_name> [<net_name>*];
– Range is specified as [MSB:LSB]. Default is one bit wide

• Declaring a register
– reg [<signed>] [<range>] <reg_name> [<reg_name>*];

• Declaring memory
– reg [<range>] <memory_name> [<start_addr> : <end_addr>];

• Examples
• reg r; // 1-bit reg variable
• wire x1, x2; // 2 1-bit wire variable
• reg signed [7:0] y_reg; // 8-bit sign register
• reg [7:0] ram_mem [0:1023]; //a 1 KB memory

12

Constants

• Constants can be written in
• decimal (default)

– 13, ’d13
• binary

– 4’b1101
• octal

– 4’o15
• hexadecimal

– 4’hd

Levels of Abstraction

• The HW can be described at several
levels of details

• To capture these details Verilog provides
four levels of abstraction

1. Switch level
2. Gate level
3. Dataflow level
4. Behavioral or algorithmic level

13

Levels of Abstraction

• Switch Level: The lowest level of abstraction is
the switch or transistor Level Modeling

• Gate Level: Synthesis tools compile high level
code and generate code at gate level

• Dataflow Level: The level of abstraction higher
than the gate level

• Behavioral Level: In more complex digital
designs, priority is given to the performance and
behaviour at algorithmic level

Switch Level

• The lowest level of abstraction (switch and
transistor level modeling).

• Rarely used at the level we are talking
about in this course

14

Gate level– Structural Modeling

• Are build from gate primitives
• Verilog has built-in gate-level primitives NAND, NOR,

AND, OR, XOR, BUF, NOT, and some others
• Describe the circuit using logic gates-much as you

have see in an implementation of a circuit in basic
logic design course

• The delay can also be modeled
• Typical gate instantiation is
and #delay instance-name (out, in1, in2, in3, …)

Gate level– Structural Modeling
module mux (out, in1, in2, sel);
output out;
input in1, in2, sel;
wire out1, out2, sel_n;
and #5 a1(out1, in1, sel_n);
and #5 a2(out2, in2, sel);
or #5 o1(out, out1, out2);
not n1(sel_n, sel);
endmodule

15

Data Flow Modeling

• Expressions, operands and operators form
the basis of data flow modeling

Operators for Dataflow Modeling

16

This statement is equivalent to

Conditional operator can also be used to infer higher order multiplexers. The
following code infers a 4:1 mux

Conditional Operator

Concatenation and Replication

• { } means concatenation of what is inside
the curly braces

17

Replication

• {n{}} means replication

A = 2’b01;

B = {4{A}} // the replication operator

The operator replicates A four times and assigns the replicated
value to B.

Thus B = 8′ b 01010101

Relational Operators

18

Reduction Operators

Bitwise Arithmetic Operators

19

Equality Operators

Logical Operators

20

Shift Operators

Examples
• Shift an unsigned reg A = 6′b101111 by 2

– B = A >> 2;
– drops 2 LSBs and appends two zeros at MSBs

position, thus
– B = 6′b001011

• Arithmetic shift right a wire A= 6′b101111 by 2
• B = A >>> 2;
• This operation will drop 2 LSBs and appends the

sign bit to 2 MSBs locations.
• Thus B is 6΄b111011.

21

Examples

• Apply & reduction operator on a 4-bit
number A=4′b1011

• assign out = &A;
• This operation is equivalent to performing a

bitwise & operation on all the bits of A i.e.
• out = A[0] & A[1] & A[2] & A[3];

Dataflow Level

• At this level every expression is modeled
with the assign keyword

• assign c=a+b

• The value on the wire c is continuously
driven by the result of the arithmetic
operation

• RHS must be a wire
• Operands my be wire or reg

22

Example Dataflow Modeling

module adder_4 (a, b, ci, s, co);

input [3:0] a, b;

input ci;

output [3:0] s;

output co;

assign {co, s} = a + b + ci;

endmodule

Example 2;1 MUX

module mux2_1(in1, in2, sel, out);

input in1, in2, sel;

output out;

assign out = sel ? in2: in1;

endmodule

module stimulus;

reg IN1, IN2, SEL;

wire OUT;

mux2_1 MUX(IN1, IN2, SEL, OUT);

initial

begin

IN1 = 1; IN2 = 0; SEL = 0;

#5 SEL = 1;

#5 IN1 = 0;

end

initial

$monitor($time, ": IN1=%b, IN2=%b, SEL=%b,

OUT=%b\n", IN1, IN2, SEL, OUT);

endmodule

mux2_1

stimulus

wire reg

23

Behavioral Modeling
• High level language constructs are used

– for loop
– if else
– while etc …

• All statements come in a procedural block
– always
– initial

• A subset of constructs are synthesizable and
called RTL Verilog

• The designer must know the HW consequences
of the code (for loop …)

Behavioral Models

• All variables on the LHS must be of type
“reg”.

• RHS may be reg or wire
initial

begin

procedural assignment 1

procedural assignment 2

.

.

end

always

begin

procedural assignment 1

procedural assignment 2

.

.

end

Non-synthesizable

24

Initial Block
• This block starts with initial keyword
• This is non synthesizable
• Non RTL
• This block is used only in stimulus
• All initial blocks execute concurrently in an arbitrary order
• They execute until they come to a #delay operator
• Then they suspend, putting themselves in the event list

delay time units in the future
• At delay units, they resume executing where they left off

Procedural Assignments

• Blocking assignment
– Represented as “=“ (for combinational circuits)
– Assignment takes place immediately
– Blocks, i.e. next statement will wait (blocked)

until the assignment is completed
always

begin

A=B;

B=A;

end

A+B, B+B

25

Procedural Assignments

• Nonblocking assignment
– Represented as “<=“ (for synchronous logic)
– Assignment takes place at the end of the block
– LHS are calculated first, then assigned to RHS

always

begin

A<=B;

B<=A;

end

Swaps A and B

reg sum_reg, carry_reg;

always @(posedge clk)

begin

sum_reg <=x^y;

carry_reg <=x&y;

end

26

Multiple Procedural Assignments

• All procedural blocks starts execution at
t=0.

• The simulator schedules their execution in
an arbitrary order

• All assignments to the same variables
must be in the same block, otherwise pre
and post synthesis simulation could be
different (if synthesized at all).

Time Control
• $time

– A built-in variable that represents simulated time
– a unitless integer
– $display($time, “a=%d”, a);

• # Time Control
– #<number> statement
– statement is not executed until <number> time units have

passed
– control is released so that other processes can execute
– used in test code
– used to model propagation delay in combinational logic 60
– xor #2 x2(c,a,b)

27

@ Time Control

• @(*)
• @(expression)
• @(expression or expression or …)
• @(posedge onebit)
• @(negedge onebit)
• do not execute statement until event occurs
• @(clk) is same as @(posedge clk or negedge

clk)

RTL Coding Guidelines
• Avoid Combinational feedback. it does not make sense
• If logic requires it, a register must be placed in the

feedback loop

reg [15:0] acc;

always @(acc)

acc=acc+1;

28

Registers
//register with asynchronous active
low reset
always @(Posedge clk or negedge
rse_n)
begin

if(!rst_n)
r_reg <=b’b0;

else
r_reg <= data;

end

//register with asynchronous active
high reset
always @(Posedge clk or negedge
rse_n)
begin

if(rst_n)
r_reg <=b’b0;

else
r_reg <= data;

end

//register with synchronous active
low reset
always @(Posedge clk)
begin

if(!rst_n)
r_reg <=b’b0;

else
r_reg <= data;

end

//register with synchronous active
high reset
always @(Posedge clk)
begin

if(rst_n)
r_reg <=b’b0;

else
r_reg <= data;

end

Example -- Accumulator
// Register with asynchronous active‐low reset
always @ (posedge clk or negedge rst_n)
begin

if(!rst_n)
acc_reg <= 16’b0;

else
acc_reg <= data+acc_reg;

end
// Register with asynchronous active‐high reset
always @ (posedge clk or posedge rst)
begin

if(rst)
acc_reg <= 16’b0;

else
acc_reg <= data+acc_reg;

end

29

Generating Clock in Stimulus
initial // All the initializations should be in the initial block
begin

clk = 0; // clock signal must be initialized to 0
5 rst_n = 0; // pull active low reset signal to low
2 rst_n=1; // pull the signal back to high

end
always // generate clock in an always block

#10 clk=(~clk);

Case Statement

module mux4_1(in1, in2, in3, in4, sel, out);
input [1:0] sel;
input [15:0] in1, in2, in3, in3;
output [15:0] out;
reg [15:0] out;
always @(*)
case (sel)

2'b00: out = in1;
2'b01: out = in2;
2'b10: out = in3;
2'b11: out = in4;
default: out = 16'bx;

endcase
endmodule

MUX whose output depends
on sel

If multiple matches, the first
one is executed only

@(*) automatically poulates
the sensitivity list with all
varaibles in the RHS

Case is inside an always
block

30

Casex and Casez

• To make comparison with the „don‟t care‟
– casez takes z as don‟t care
– casex takes z and x as don‟t care

always @(op_code)
begin

casez (op_code)
4’b1???: alu_inst(op_code);
4’b01??: mem_rd(op_code);
4’b001?: mem_wr(op_code);

endcase
end

If Statement

if (brach_flag)
PC = brach_addr

else
PC = next_addr;

always @(op_code)
begin

if (op_code == 2’b00)
cntr_sgn = 4’b1011;

else if (op_code == 2’b01)
cntr_sgn = 4’b1110;

else
cntr_sgn = 4’b0000;

end

31

Avoiding latches
• A latch is a storage device that stores a value without the

use of a clock.
– Latches are technology-specific and must be avoided in

synchronous designs

• To avoid latches adhere to coding guidelines
– fully specify assignments or use a default assignment

input [1:0] sel;
reg [1:0] out_a, out_b;
always @ (*)
begin

if (sel == 2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else

out_a = 2’b01;
end

Out_b is not
assigned any value
under else, the
synthesis tool will
infer a latch

Avoiding latches

• Use default assignment
input [1:0] sel;
reg [1:0] out_a, out_b;
always @ (*)

begin
out_a = 2’b00;
out_b = 2’b00;
if (sel=2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else

out_a = 2’b01;
end

32

Avoiding latches
• Check all conditions

input [1:0] sel;
reg [1:0] out_a, out_b;
always @ (*)

begin
out_a = 2’b00;
out_b = 2’b00;
if (sel=2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else if (sel == 2’b01)

out_a = 2’b01;
end

always @*
begin

out_a = 2’b00;
out_b = 2’b00;
if (sel==2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else if (sel == 2’b01)

out_a = 2’b01;
else

out_a = 2’b00;
end

Avoid latches
always @*

begin
out_a = 2’b00;
out_b = 2’b00;
case (sel)
2’b00:

begin
out_a = 2’b01;
out_b = 2’b10;

end
2’b01:

out_a = 2’b01;
default:

out_a = 2’b00;
endcase

end

