
1

Register Transfer LevelRegister Transfer Level

CSE3201CSE3201

RTLRTL
A digital system is represented at the register A digital system is represented at the register
transfer level by these three componentstransfer level by these three components

1.1. The set of registers in the systemThe set of registers in the system
2.2. The operation that are performed on the data stored The operation that are performed on the data stored

in the registersin the registers
3.3. The control that supervises the sequence of The control that supervises the sequence of

operations in the system.operations in the system.
The operations executed on the information The operations executed on the information
stored in the registers are elementary stored in the registers are elementary
operations and performed in parallel during operations and performed in parallel during
one clock cycle.one clock cycle.

2

RTLRTL

Comma is used to separate 2 or more Comma is used to separate 2 or more
operations that are executed in the same operations that are executed in the same
timetime
If(T3=1) then (R2If(T3=1) then (R2←←R1, R1R1, R1←←R2)R2)

That is possible with registers that have That is possible with registers that have
edge triggered flipedge triggered flip--flopflop

RTL in HDLRTL in HDL
assign s=A+B;

always @(A or B)
s=A+B;

always @ (posedge clock)
begin

RA=RA+RB;
RD=RA;

end

always @ (negedge clock)
begin

RA<=RA+RB;
RD<=RA;

end

Blocking procedural
assignment, new value of
RA is assigned to RD

Non-blocking procedural
assignment, old value of
RA is assigned to RD

Continuous assignment,
for combinational
circuits only, output can
not be a reg

3

HDL OperationsHDL Operations

Arithmetic: Arithmetic: + + -- * / %* / %
Logic (bit wise):Logic (bit wise): ~ & | ^~ & | ^
LogicalLogical ! && ||! && ||
ShiftShift >> << { , }>> << { , }
RelationalRelational > < == != >= <=> < == != >= <=
In shifting, the vacant bits are filled with In shifting, the vacant bits are filled with
zeroszeros

Loop StatementsLoop Statements

integer count

initial

begin

count = 0;

while (count <0)

#5 count = count+1;

end

initial

begin

clock = 1’b0;

end

repeat (16)

#5 clock = ~ clock;

end

4

Loop StatementsLoop Statements
module decoder

input [1:0] IN;

output [3:0]Y;

reg [3:0]Y;

integer I;

always @(IN)

for (I=0; I<=3; I=I+1)

if (IN == I) Y[I]=1;

else Y[I}=0;

endmodule

assign Y=s ? L1: L0;

Or

always @(L1 or L0 or S)

if (S) Y=I1;

else Y=I0;

5

Algorithmic State Machine (ASM)Algorithmic State Machine (ASM)

Data processing
path, manipulates
data in registers

Initiates a sequence of
commands to the
datapath, may use status
conditions from the
datapath

ASMASM

ASM is similar to flowchart in the sense ASM is similar to flowchart in the sense
that it specifies a sequence of procedural that it specifies a sequence of procedural
steps and decision paths for an algorithm.steps and decision paths for an algorithm.
However, ASM is interpreted differently However, ASM is interpreted differently
than a flowchart. While the flow chart is than a flowchart. While the flow chart is
interpreted as a sequence of operations, interpreted as a sequence of operations,
ASM describes the sequence of events as ASM describes the sequence of events as
well as the timing relationship between the well as the timing relationship between the
states (as we will see shortly).states (as we will see shortly).

6

The state is given a symbolic name (T3)

Binary code for the assigned state (011)

The operations that are performed in this state R←0; and START could
be an output signal is generated to start some operation

The operation is performed when we leave T3 to the next state

State BoxState Box

Decision BoxDecision Box

7

Conditional BoxConditional Box
Input to the conditional
box must come from one
of the exit paths of a
decision box.

The register operation or
outputs listed inside the
conditional box are
generated during a given
state, if the input condition
is satisfied of course

ASMASM

The operation in the state box The operation in the state box
or conditional box are or conditional box are nottnott
executed in the current state.executed in the current state.
Rather, a control signal is Rather, a control signal is
asserted in the current state if asserted in the current state if
Q0 is 1 and the operation is Q0 is 1 and the operation is
done at the transition from this done at the transition from this
state to the next one (with the state to the next one (with the
next clock cycle)next clock cycle)

MUL0

10 Q0

A←A+B
C ←Cout

8

ASM BlockASM Block

ASM block is a structure consisting of one
state box and all the decision and
conditional boxes connected to its exit path.

Each block in the ASM describes the state
of the system during one clock-pulse
interval.

The operations within the state and
conditional boxes are executed at the clock
pulse when the system is leaving T1 to T2,
T3, or T4

One entrance

If flow chart, A is incremented, then E
is tested

Timing ConsiderationTiming Consideration

9

Design ExampleDesign Example
Design a system with 2 flipDesign a system with 2 flip--flops E and F, and one 4 flops E and F, and one 4
bit binary counter (Abit binary counter (A44, A, A33, A, A22, A, A11).).
A start signal initiates the operation by clearing A and A start signal initiates the operation by clearing A and
F.F.
Then the counter is incremented by one starting from Then the counter is incremented by one starting from
the next clock pulse and continues to increment until the next clock pulse and continues to increment until
the operation stops. Athe operation stops. A33 and Aand A44 determine the determine the
operations.operations.

–– If AIf A33 = 0, E is cleared and continue= 0, E is cleared and continue
–– If A3=1, E is set; then if A4=0 continue, if A4=1 F is set to 1 If A3=1, E is set; then if A4=0 continue, if A4=1 F is set to 1 on on

the next clock cycle and the system stops.the next clock cycle and the system stops.

F is set to 1 in the next
clock cycle, must be a
separate state

BLOCK

BLOCK

BLOCK

Design a system with 2 flipDesign a system with 2 flip--flops E flops E
and F, and one 4 bit binary counter and F, and one 4 bit binary counter
(A4, A3, A2, A1).(A4, A3, A2, A1).

A start signal initiates the operation A start signal initiates the operation
by clearing A and F.by clearing A and F.

Then the counter is incremented by Then the counter is incremented by
one starting from the next clock one starting from the next clock
pulse and continues to increment pulse and continues to increment
until the operation stops. A3 and until the operation stops. A3 and
A4 determine the operations.A4 determine the operations.

If A3 = 0, E is cleared and If A3 = 0, E is cleared and
continuecontinue

If A3=1, E is set; then if A4=0 If A3=1, E is set; then if A4=0
continue, if A4=1 F is set to 1 continue, if A4=1 F is set to 1
on the next clock cycle and on the next clock cycle and
the system stops.the system stops.

10

Counter Flip-Flops

A4 A3 A2 A1 E F Condition State
0 0 0 0 1 0 A3=0, A4=0 T1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0

0 1 0 0 0 0 A3=1, A4=0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0

1 0 0 0 1 0 A3=0,A4=1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0

1 1 0 0 0 0 A3=1,A4=1

1 1 0 1 1 0 T2

1 1 0 1 1 1 T0

Timing SequenceTiming Sequence

That illustrates the difference between ASM and That illustrates the difference between ASM and
flowchart.flowchart.
–– When the system is in state 1011, It checks AWhen the system is in state 1011, It checks A33 is 0, is 0,

so it sets E to 0 and increment counter to 1100, the so it sets E to 0 and increment counter to 1100, the
next cycle will start with 1100 and E set to 0.next cycle will start with 1100 and E set to 0.

–– Then checks AThen checks A33 and Aand A44 (both are 1), it sets E to 1, (both are 1), it sets E to 1,
and increments counter.and increments counter.

–– Next cycle counter is 1101, and E=1 and now it is in Next cycle counter is 1101, and E=1 and now it is in
state 2state 2

–– Then it set F to 1 and goes to state 0Then it set F to 1 and goes to state 0

11

DatapathDatapath DesignDesign

The requirements for the design of the The requirements for the design of the
datapathdatapath are specified in the state and are specified in the state and
conditional boxes.conditional boxes.
The control logic is determined from the The control logic is determined from the
decision and the required state transition.decision and the required state transition.
A look at the A look at the datapathdatapath design of the design of the
previous example.previous example.

DatapathDatapath designdesign

In state TIn state T00, clear the counter and the F flip, clear the counter and the F flip--
flop flop (the and gate and f inputs).(the and gate and f inputs).
In state TIn state T11, if A, if A33=0, set E=0, set E←←0 0 (will (will
generate 01 on the JK inputs of E if the generate 01 on the JK inputs of E if the
state is T1)state is T1)..
In state TIn state T11, if A, if A33=1; E =1; E ←← 1 1 (note the inputs (note the inputs
of E)of E)..
In state TIn state T22 F F ←← 1, and 1, and (the F(the F--F is set)F is set)..

Correction

12

Sometimes it is useful to separate the control
operation from the register transfer of the datapath.

The state diagram represents the control sequence;
while the register transfer operation represents what
happens in every state.

13

State TableState Table

The state diagram can be converted into a The state diagram can be converted into a
state table.state table.
Three states (TThree states (T00, T, T11, and T, and T22), represents), represents
as the output of two registers (Gas the output of two registers (G11 GG00) as) as
00, 01, and 11.00, 01, and 11.
The following table shows the state table The following table shows the state table
for the previous example.for the previous example.

Present State Inputs next State Outputs

Present (symbol) G1 G0 S A3 A4 G1 G0 T0 T1 T2

T0 0 0 0 X X 0 0 1 0 0

T0 0 0 1 X X 0 1 1 0 0

T1 0 1 X 0 X 0 1 0 1 0

T1 0 1 X 1 0 0 1 0 1 0

T1 0 1 X 1 1 1 1 0 1 0

T2 1 1 X X X 0 0 0 0 1

T0=G0’

T1=G1’G0

T2=G1

DG1=T1A3A4

DG2=T0S+T1

14

HDL DescriptionHDL Description

The description could be one three different The description could be one three different
levelslevels
–– Behavioral description on the RTL levelBehavioral description on the RTL level
–– Behavior description on the algorithmic levelBehavior description on the algorithmic level
–– Structural descriptionStructural description

Note that the algorithmic level, is used only to Note that the algorithmic level, is used only to
verify the design verify the design ideasideas in the early stages. Some in the early stages. Some
of the constructs might not be of the constructs might not be synthesizablesynthesizable
Following RTL behavior descriptionFollowing RTL behavior description

15

//RTL description of design example module //RTL description of design example module
Example_RTL (Example_RTL (S,CLK,Clr,E,F,AS,CLK,Clr,E,F,A););
//Specify inputs and outputs //Specify inputs and outputs
//See block diagram Fig. 8//See block diagram Fig. 8--1010

input input S,CLK,ClrS,CLK,Clr;;
output E,F;output E,F;
output [4:1] A;output [4:1] A;

//Specify system registers//Specify system registers
regreg [4:1] A; //A register[4:1] A; //A register
regreg E, F; //E and F flipE, F; //E and F flip--flopsflops
regreg [1:0] [1:0] pstatepstate, , nstatenstate; //control register; //control register

//Encode the states//Encode the states
parameter T0 = 2'b00, T1 = 2'b01, T2 = parameter T0 = 2'b00, T1 = 2'b01, T2 =

2'b11;2'b11;
//State transition for control logic//State transition for control logic
//See state diagram Fig. 8//See state diagram Fig. 8--11(a) 11(a)

always @(always @(posedgeposedge CLK or CLK or negedgenegedge ClrClr))
if (~if (~ClrClr)) pstatepstate = T0; //Initial state= T0; //Initial state
else else pstatepstate <= <= nstatenstate; //Clocked ; //Clocked

operationsoperations

always @ (S or A or always @ (S or A or pstatepstate))
case (case (pstatepstate))

T0: if(S) T0: if(S) nstatenstate = T1;= T1;
T1: if(A[3] & A[4]) T1: if(A[3] & A[4]) nstatenstate = T2;= T2;
T2: T2: nstatenstate = T0;= T0;
default: default: nstatenstate = T0;= T0;

endcaseendcase
//Register transfer //Register transfer operatonsoperatons
//See list of operations Fig.8//See list of operations Fig.8--11(b)11(b)

always @(always @(posedgeposedge CLK)CLK)
case (case (pstatepstate))

T0: if(S)T0: if(S)
beginbegin

A <= 4'b0000;A <= 4'b0000;
F <= 1'b0;F <= 1'b0;

endend
T1: T1:

beginbegin
A <= A + 1'b1;A <= A + 1'b1;
if (A[3]) E <= 1'b1;if (A[3]) E <= 1'b1;
else E <= 1'b0;else E <= 1'b0;

endend
T2: F <= 1'b1;T2: F <= 1'b1;

endcaseendcase
endmoduleendmodule

TestingTesting

Note that because we used nonNote that because we used non--blocking blocking
assignment we did not have to worry assignment we did not have to worry
about the order of the statements in every about the order of the statements in every
state.state.
Had we used a blocking assignment, we Had we used a blocking assignment, we
have to worry about the order.have to worry about the order.

16

TestingTesting
//HDL Example 8//HDL Example 8--33
////--
//Test bench for design example//Test bench for design example
module test_design_example;module test_design_example;

regreg S, CLK, S, CLK, ClrClr;;
wire [4:1] A;wire [4:1] A;
wire E, F;wire E, F;

//Instantiate design example//Instantiate design example
endmoduleendmodule

Example_RTL Example_RTL dsexpdsexp
((S,CLK,Clr,E,F,AS,CLK,Clr,E,F,A););

initialinitial
beginbegin

ClrClr = 0;= 0;
S = 0;S = 0;
CLK = 0; CLK = 0;

#5 #5 ClrClr = 1; S = 1;= 1; S = 1;
repeat (32)repeat (32)
beginbegin
#5 CLK = ~ CLK;#5 CLK = ~ CLK;

end end
endend

initial initial
$monitor("A = %b E = %b F = $monitor("A = %b E = %b F =

%b time = %0d", A,E,F,$time);%b time = %0d", A,E,F,$time);

Structural DescriptionStructural Description

17

Structural DescriptionStructural Description
//HDL Example 8//HDL Example 8--44
////--
//Structural description of design //Structural description of design
exampleexample
//See block diagram Fig. 8//See block diagram Fig. 8--1010
module Example_Structure module Example_Structure
((S,CLK,Clr,E,F,AS,CLK,Clr,E,F,A););

input input S,CLK,ClrS,CLK,Clr;;
output E,F;output E,F;
output [4:1] A;output [4:1] A;

//Instantiate control circuit //Instantiate control circuit
control control ctlctl

(S,A[3],A[4],CLK,Clr,T2,T1,Clear);(S,A[3],A[4],CLK,Clr,T2,T1,Clear);
//Instantiate E and F flip//Instantiate E and F flip--flips flips

E_F EF (T1,T2,Clear,CLK,A[3],E,F);E_F EF (T1,T2,Clear,CLK,A[3],E,F);
//Instantiate counter //Instantiate counter

counter counter ctrctr (T1,Clear,CLK,A);(T1,Clear,CLK,A);
endmoduleendmodule

//Control circuit (Fig. 8//Control circuit (Fig. 8--12) 12)
module control module control
(Start,A3,A4,CLK,Clr,T2,T1,Clear);(Start,A3,A4,CLK,Clr,T2,T1,Clear);

input Start,A3,A4,CLK,Clr;input Start,A3,A4,CLK,Clr;
output T2,T1,Clear;output T2,T1,Clear;
wire G1,G0,DG1,DG0;wire G1,G0,DG1,DG0;

//Combinational circuit//Combinational circuit
assign DG1 = A3 & A4 & T1,assign DG1 = A3 & A4 & T1,

DG0 = (Start & ~G0) | T1,DG0 = (Start & ~G0) | T1,
T2 = G1,T2 = G1,
T1 = G0 & ~G1,T1 = G0 & ~G1,
Clear = Start & ~G0;Clear = Start & ~G0;

//Instantiate D flip//Instantiate D flip--flopflop
DFF G1F (G1,DG1,CLK,Clr),DFF G1F (G1,DG1,CLK,Clr),

G0F (G0,DG0,CLK,Clr);G0F (G0,DG0,CLK,Clr);
endmoduleendmodule

Structural DescriptionStructural Description
//D flip//D flip--flopflop
module DFF (module DFF (Q,D,CLK,ClrQ,D,CLK,Clr););

input input D,CLK,ClrD,CLK,Clr;;
output Q;output Q;
regreg Q;Q;
always @ (always @ (posedgeposedge CLK or CLK or

negedgenegedge ClrClr))
if (~if (~ClrClr) Q = 1'b0;) Q = 1'b0;
else Q = D;else Q = D;

endmoduleendmodule

//E and F //E and F flipfflipf--lops lops
module E_F module E_F
(T1,T2,Clear,CLK,A3,E,F);(T1,T2,Clear,CLK,A3,E,F);

input T1,T2,Clear,CLK,A3;input T1,T2,Clear,CLK,A3;
output E,F;output E,F;
wire E,F,JE,KE,JF,KF;wire E,F,JE,KE,JF,KF;

//Combinational circuit//Combinational circuit
assign JE = T1 & A3,assign JE = T1 & A3,

KE = T1 & ~A3,KE = T1 & ~A3,
JF = T2,JF = T2,
KF = Clear;KF = Clear;

//Instantiate JK //Instantiate JK flipflopflipflop
JKFF EF (E,JE,KE,CLK),JKFF EF (E,JE,KE,CLK),

FF (F,JF,KF,CLK);FF (F,JF,KF,CLK);
endmoduleendmodule

18

Structural DescriptionStructural Description
//JK flip//JK flip--flopflop
module JKFF (Q,J,K,CLK);module JKFF (Q,J,K,CLK);

input J,K,CLK;input J,K,CLK;
output Q;output Q;
regreg Q;Q;
always @ (always @ (posedgeposedge CLK)CLK)
case ({J,K})case ({J,K})

2'b00: Q = Q;2'b00: Q = Q;
2'b01: Q = 1'b0;2'b01: Q = 1'b0;
2'b10: Q = 1'b1;2'b10: Q = 1'b1;
2'b11: Q = ~Q;2'b11: Q = ~Q;

endcaseendcase
endmoduleendmodule

//counter with synchronous //counter with synchronous
clearclear
module counter module counter
(Count,Clear,CLK,A);(Count,Clear,CLK,A);

input Count,Clear,CLK;input Count,Clear,CLK;
output [4:1] A;output [4:1] A;
regreg [4:1] A;[4:1] A;
always @ (always @ (posedgeposedge CLK)CLK)
if (Clear) A<= 4'b0000;if (Clear) A<= 4'b0000;
else if (Count) A <= A + else if (Count) A <= A +

1'b1;1'b1;
else A <= A;else A <= A;

endmoduleendmodule

Binary MultiplierBinary Multiplier
We did this before using We did this before using
combinational circuit combinational circuit
(adders, gates, ..).(adders, gates, ..).
Use one adder and shift Use one adder and shift
registers.registers.
Instead of shifting Instead of shifting
multiplicand to the left, multiplicand to the left,
shift the partial product shift the partial product
to the right.to the right.

23 10111

19 10011

10111

10111

00000

00000

10111

437 110110101

19

Binary MultiplierBinary Multiplier

Assume that the multiplicand in B, and the Assume that the multiplicand in B, and the
multiplier in Q.multiplier in Q.
P contains P contains nn the length of the multiplierthe length of the multiplier

20

Partial product is
shifted one bit at a
time into Q and
eventually replaces
the multiplier

A ← shr A, An-1 ← C

Q ← shrQ,Qn-1 ← A0

C ← 0

Mistake an
arrow from T3
to T2 if Z=0

Correction

21

State TableState Table

Present State Inputs next State Outputs

G1 G0 S Z G1 G0 T0 T1 T2 T3

0 0 0 X 0 0 1 0 0 0

0 0 1 X 0 1 1 0 0 0

0 1 X X 1 0 0 1 0 0

1 0 X X 1 1 0 0 1 0

1 1 X 0 1 0 0 0 0 1

1 1 X 1 0 0 0 0 0 1

Controller DesignController Design

We can use conventional sequential circuit We can use conventional sequential circuit
design for the controller, if we did using 2 design for the controller, if we did using 2
D type FlipD type Flip--Flops Flops

DG1=G1G’0 + G0 G’1 +G1Z’

DG0=SG’0 + G1 G’0

1111??1111??
??1111??

1111??
1111??

G1

G0

Z

S

22

Z is a status signal that
checks P for 0.

Sequence Register and DecoderSequence Register and Decoder

If the number of variables is large, conventional If the number of variables is large, conventional
design is difficult.design is difficult.
Need specialized methods for the control Need specialized methods for the control
design.design.
Uses a register to control the states, and a Uses a register to control the states, and a
decoder to provide an output corresponding to decoder to provide an output corresponding to
each of the states.each of the states.
A register with n flipA register with n flip--flops can have up to 2flops can have up to 2nn

states, and nstates, and n--toto--22nn line decoder has up to 2line decoder has up to 2nn

outputs.outputs.

23

Sequence Register and DecoderSequence Register and Decoder

The circuit could be obtained directly from The circuit could be obtained directly from
the table by inspection (keep in mind that the table by inspection (keep in mind that
the states are available as inputs).the states are available as inputs).
Directly from the table, there are three 1Directly from the table, there are three 1’’s s
for Gfor G11, which means, which means

200

3211

TSTD
ZTTTD

G

G

+=
++=

24

One FlipOne Flip--Flop per StateFlop per State

We need n flipWe need n flip--flops for every stateflops for every state
In this case, we need 4 flipIn this case, we need 4 flip--flops.flops.
The circuits are very simple to implement The circuits are very simple to implement
and can be obtained directly from the state and can be obtained directly from the state
diagram.diagram.
For example, we move from state 0 to 1 if For example, we move from state 0 to 1 if
S=1 which means DS=1 which means DT1T1=T=T00SS

One FlipOne Flip--Flop per StateFlop per State

23

312

01

300

TD
ZTTD

STD
ZTSTD

T

T

T

T

=
+=

=
+=

25

Design with multiplexersDesign with multiplexers

The previous design consists of flipThe previous design consists of flip--flops, flops,
decoder, and gates.decoder, and gates.
Replacing gates with multiplexers results Replacing gates with multiplexers results
in a regular pattern of the design.in a regular pattern of the design.
–– First level contains multiplexers (possibly First level contains multiplexers (possibly

added gates, but only one level.added gates, but only one level.
–– The second level is the registers to hold the The second level is the registers to hold the

present state informationpresent state information
–– The last stage has a decoder that provides a The last stage has a decoder that provides a

separate output for every stateseparate output for every state

26

Multiplexer input conditionMultiplexer input condition
Present State next State I/P inputs

G1 G0 G1 G0 cond. MUX1 MUX2

0 0 0 0 w’

0 0 0 1 w 0 w

0 1 1 0 x

0 1 1 1 x’ 1 x’

1 0 0 0 y’

1 0 1 0 yz’ yz’+yz=y yz

1 0 1 1 yz

1 1 0 1 y’z

1 1 1 0 y y+y’z=y+z y’z+y’z‘=y’

1 1 1 1 y’z’

27

Counting the number of 1Counting the number of 1’’ss

The system counts the number of 1The system counts the number of 1’’s in s in
R1, and set R2 accordingly.R1, and set R2 accordingly.
The bits in R1 are shifted one at a time, The bits in R1 are shifted one at a time,
checking if the shifted out bit is 1 or 0, and checking if the shifted out bit is 1 or 0, and
incrementing R2incrementing R2
Z is a signal to indicate if R1 contains all Z is a signal to indicate if R1 contains all
00’’s or not.s or not.
E is the output of the flipE is the output of the flip--flop (the shifted flop (the shifted
out bit).out bit).

28

?

E could not be checked
in the same block as T2
since the shift to E will
not happen unstill the
end of the cucle.

29

Control (counting of 1Control (counting of 1’’s)s)

Present Next Conditions MUX inputs

State State

G1 G0 G1 G0 MUX1 MUX2

0 0 0 0 S’

0 0 0 1 S 0 S

0 1 0 0 Z

0 1 1 0 Z’ Z’ 0

1 0 1 1 1 1

1 1 1 0 E’

1 1 0 1 E E’ E

30

31

