CSE 1710

Lecture 7
Recap and Review of Core Concepts

RQ2.1-2.10

What is a method? What is an attribute?
— performs some action — holds data
— has a signature and — has aname and a type
TELUrN o more parameters, — declared and initiatialized

type compatibility must be in the class defn
range of possibilities? assured
NO parameters
var.methodName ()

Classname.methodName () var.attributeName

In general...
— both are members of a class, (also called features)
» method signatures must be unique, attribute names must be unique
— compiler checks invocations:
* does the signature (or the attribute name) match what is in the class
definition?
* the attributes that clients can access are called fields 2

RQ2.11
What is scope? What defines scope?

— the term scope is used to refer to the place(s)
where it is valid to use a variable
— scope of class attributes

» valid to use an attribute anywhere (provided that
the class has been imported)

RQ2.12
What is a class? What is an object?
— a definition — an actual instance of the
thing that was defined
- e.g., a description of a - e.g, an actual car
car
— gets created in advance — gets created at runtime
* itis compiled, is bytecode
— it (the bytecode) gets — it gets “born” during
loaded into runtime runtime, it “dies” during
memory by the VM runtime
upon invocation of an — has a state during runtime
app * specific values for all
attributes

RQ2.13-2.14

What do classes have? What do objects have?

— can have definitions of:

static methods
non-static methods
static attributes
non-static attributes

— all objects of a given type

have the same set of
attributes:

» the static attributes, if any,
are common to all objects of

RQ2.15-2.17

UML Class and Object Diagrams
— full class names separated by colons
* Injava code, full class names separated by dots
— attributes in class diagrams:
attributeName : type

a given type; the value
must be the same

the non-static attributes are
specific to each object; the
values may differ

* a+ or - symbol in front means private or public, resp’y

— methods in class diagrams: type::1ib: :Rectangle
methodName (param) type _width: int
type::1lib::Rectangle “height int
getArea(): int
-width: int
-height int N

RQ2.18
What is abstraction?
— a process whereby details are replaced with
something simpler

* nature of these details?
— object properties?
» abstraction by parameterization
— details about how a task is performed?
» abstraction by delegation

Why do we use abstraction?
— To reduce complexity

getArea(): int -
getCircumference (): int LiRectangle :
getDiagonal(): int _width: 3 s:Rectangle
getWidth(): int -height 4
getHeight(): int -width: 2
setWidth(int): void “height 5
setHeight (int): void 6
RQ2.19

What is an app vs an application?

— app: a class with a main method

— application: an app plus several components

RQ2.20,2.21 RQ2.22-2.23

What does it mean to be a client? lllustrations of encapsulation
— to know how & where to look for components . knowing how to signal a left turn while
* understand package structure .. .
+ understand class names may not be unique driving a car does not break encapsulation
* understand how to read an API, UML diagrams - knowing how to activate the signal does mean

— API a document that specifies what a component does

knowing how the signal actually operates
— to know what you want your app to do

* e.g., how is signal wired? where is the fuse? what is

* not necessarily how to implement each and every sub-

the wattage of the bulb?.
component
+ you can delegate this to other components * encapsulation makes the lives of the client
— to know how to use components and the implementer easier
* how to construct objects or otherwise get references to them .
— for delegation of representation, delegation of tasks - the Chent needS not knOW hOW the Component
* how to invoke methods, make use of fields works
- staticand non-static variants — the implementer needs not know what is the
o component used for. 10
RQ2.24 RQ2.25
Can the client and implementer roles be What does the VM do when a program
occupied simultaneously? crashes or has a bug?
* Depends on who is looking at the situation * for crashes
— with respect to end users — VM identifies where the problem occurs in the
* the end user is the client stack trace
* the application is an implementer e for bugs

— with respect to a particular component (no main
method)

* an app that uses the component is the client

— VM will not realize that there is a bug, so it
cannot possibly flag them

* debugging
— you (not the VM) need to determine why the
program produced an incorrect result

* the component is the implementer

1 — may need to trace the entire program 12

RQ2.26
So what is the difference between a bug
and other types of errors?
* abug

— depends on some notion of what correct output
looks like

* compile-time error

— compiler has a problem with the syntax

— need to understand compiler’s error message
* run-time error

— VM had a problem running the byte code

— need to understand stack trace
13

RQ2.27-2.29
Who’s to blame when run-time errors
occur?

* run-time error in the main class
— could be the user
* provided invalid input?
— could be the main class
* has faulty implementation?
* run-time error in a component
— could be the main class
* passed invalid parameters?

— could be the component

* has faulty implementation? "

RQ2.30-2.31
What are the key concepts about Software
Engineering?
* it is study of software projects and their
progress

+ “Risk Mitigation by Early Exposure” is a key
principle it is not about program
— for instance

» converting the type of a value at runtime is risky
- e.g., converting a double to an int will result in data loss)
* the compiler mitigates this risk by checking type
compatibility and refuse to compile if there is a
violation

15

RQ2.32
What do | need to know about constants?
* literals embedded in expressions or as
parameters are magic numbers

— you used a literal because:
» some particular value is needed

» that particular value is pre-defined and unchanging

* magic numbers should be avoided
* use variables instead of magic numbers

* how do you enforce that the value is
predefined and not able to change?
— use the keyword £inal before the declaration.
16

RQ2.33-2.35
What do | need to know about contracts?

* useful during development and testing

— stipulates the division of responsibilities:
* the client
- needs to ensure the precondition is met
* the implementer
- needs to ensure the postcondition is met
— if precondition is not met, then it is client’s
responsibility for whatever happens

» this absolves the implementer of any responsibility

— implementer may (1) cause crash or (2) return something
which may or may not be as specified under the post

* a dangerous condition can arise if the false
precondition does not cause the program to crash;,

